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ON THE THEORY OF SYNTHESIS OF MINIMAL SCHEMES OF SYSTEMS CONTROL OF
HYDRAULIC AND PNEUMATIC DRIVES

Showed the strict compliance of the scientific direction "Synthesis of minimum control schemes of hydraulic and pneumatic drive systems" developed
by the author with the point of view of general algebra, algebra of logic, graph theory and automata theory. The synthesis of the minimum graph of
operations, which is a mathematical model of the control system, has been proved. The legitimacy of the methods of undivided decomposition of
equations describing the scheme of the control system has been proved. The control system is considered as a cyclic Moore finite automaton. By a
cyclic automaton (CA) we will understand the mathematical model of a device designed to control cyclic processes, which are a set of technological
operations performed in a certain sequence. In this regard, the automaton at each clock necessarily passes into some new state, and for a finite number
of cycles the target reaches any state, and its graph contains a contour, covering all states. In general, the CA may contain several circuits, so that each
circuit is interpreted either as one of the possible sequences of technological operations due to the corresponding mode of operation, or as an
independent and simultaneous execution of a number of sets of technological operations. A sequential decomposition of the CA is presented in order to
represent it by the sequential operation of automata with one internal state. Such a consideration of the function of transitions will naturally lead to a
decrease in the number of elements in the implementation of the CA. The study will be subjected to the CA, the graph of which consists of a single
circuit, since the results obtained are easily generalized to multi-circuit CA. Obtaining a breakdown of the states of a cyclic automaton in the manner
indicated above is performed directly according to any automaton description without any additional calculations, tables and other constructions.
Keywords: mathematical model, general algebra, graph theory, automata theory, minimal scheme, equations.

M. B. YEPKAIIIEFHKO

JIO TEOPII CHHTE3Y MIHIMAJIbHUX CXEM CUCTEM YITPABJITHHS T'TJTPO- 1
ITIEBMOITPUBO/IIB

Ioka3zaHo CyBOpY BiJIOBIIHICTH PO3POOJIEHOr0 aBTOPOM HAyKOBOro HampsiMy «CHHTE3 MIHIMAJIBHMX CXEM YIpaBIIHHSA CHCTEM Tiipo- Ta
MTHEBMOIIPHBO/IB» 3 TOMIANY 3arajbHOI anredpu, anreOpu Joriku, Teopii rpadiB Ta Teopil aBromariB. JloBeneHo cuHTe3 MiHiMaibHOrO rpada
orepalrlii, [0 € MaTeMaTHIHOIO MOJICIUTIO CHCTEMHU KepyBaHHs. [|0BeJeHO MPaBOMIPHICTh METOAIB HEPO3ILUTBHOI IEKOMIIO3HLIT PiBHSHb, 10 OMUCYIOTh
cXeMy cUcTeMH ynpasiiHHsA. CHcTeMa yIpaBJIiHHS CHPHIAMAEThCS K LUKJIOBHH KiHNeBuid aBromar Mypa. I1in nukiosuM aBromaroM (L{A) posymiemo
MaTeMaTHYHy MOZEIb IIPUCTPOIO, MPU3HAYECHOrO IS YIPABIIHHS LHUKIYHUMH HPOLECAMH, sKi € CyKyIHICTIO TEXHOJIOTIYHHMX OIepawuii, oo
BUKOHYIOTHCS B NIEBHIH MOCIIZOBHOCTI. Y 3B'A3Ky 3 IIMM, aBTOMAT y KOXKHOMY TaKTi HEOJMIHHO HIEPETBOPIOETHCS HA ACSKUI HOBUIl CTaH, IPUUOMY 32
KiHIeBe 4nciao TakTiB L[A nmocsirae Gyab-sikoro crany, a rpad) HOro MiCTHUTh KOHTYp, IO OXOIUTIOE YCi cTaHH. Y 3arajbHOMy BHIaaky LA moxe
MICTHTH KiJIbKa KOHTYpIB, OTXKE KOXKEH KOHTYp IHTEpIpeTyeThes, abo SIK OJHA 3 MOXJIMBHX IOCIIOBHOCTEH BHKOHAHHS TEXHOJIOTIYHHX OINEparii,
00yMOBIICHA BIAMOBIZHUM PEXKHMOM POOOTH, ab0 SIK HE3aICXKHE Ta OJHOYACHE BHKOHAHHS HU3KHM CYKYIHOCTEH TEXHOJIOTIYHHX OIepariii.
IIpencrasnena nmociijoBHa JekoMmo3uLis LA 3 METOI0 MpeACTaBICHHs HOTO MOCIIIOBHOI POOOTO0 aBTOMATIB 3 OJHUM BHYTPIlIHIM cTaHOM. Takuii
po3nsi QYHKLIT epexoaiB NPUPOIHO NPU3BEAE 10 3MEHIICHHs KIIBKOCTI eleMeHTiB mif yac peanisawii LIA. Jocmimkennto mignamo LA, rpad skoro
CKJIAJIAETBCS 3 ONHOTO KOHTYPY, TaK sSIK OTPUMAaHI pe3yJIbTaTH JIETKO y3araJbHIOIOTECS Ha 6araTokoHTypHi L{A. OTpUMaHHS pO30UTTS CTaHIB IUKIOBOTO
aBTOMaTa BKa3aHHM BHIIE CIOCOOOM BUKOHAHO GE3M0CEPEaHbO 3a OyAb-IKUM aBTOMaTHIHUM OMUCOM 6e3 OyAb-KHX JOAATKOBHX OOYHCIICHB, TaOIHIb
Ta IHIIKMX MOOYI0B.
KurouoBi ci1oBa: MaTeMaTHIHa MOZIENIb, 3aralibHa anredpa, Teopis rpadis, Teopist aBTOMATIB, MiHIMAIbHA CXeMa, PIBHSIHHSL.

Introduction. In the synthesis of systems of residual functions, which leads, in combination with a

hydraulic and pneumatic automatics, a standard positional
structure is used, which has known advantages, the main
disadvantage of which is the complexity of the schemes.
Partial minimization of the standard positional structure
was proposed in the works of YuditskyS. A,
Goedecke W., Belforte G., Reizo J., etc. [1]. The method
of complete minimization of the standard positional
structure was first published by the author in [1, 2]. It is
based on the synthesis of the minimum graph of
operations and the synthesis of equations with using the
proposed mathematical model of the “correspondence
matrix" [2]. In the synthesis of schemes, methods of
separate decomposition of equations are used, they are
described in the works of Yuditsky S. A., Bettini A,
Middlton F., Gauthier D., Eng B., Rohner P. etc. [1]. The
main disadvantage of these methods is the complexity of
the schemes. For the first time, the principles of undivided
decomposition of equations and the method of
synthesizing circuits on switchgear were presented by the
author in [1, 3]. Methods of undivided decomposition of
equations lead to minimal schemes, they are based on the
decomposition of the equation into two variables, the
selection of decomposition variables and the calculation of

modular element base [3], to schemes with a minimum
number of modules and elements.

In this article, the author focuses on the strict
combination of the developed scientific direction
"Synthesis of minimum control schemes of hydro- and
pneumatic drive systems" with the point of view and view
of general algebra, graph theory and automata theory.

Under the cyclic automaton (CA) we will understand
the mathematical model of a device designed to control
cyclic processes, which are a set of technological
operations performed in a certain sequence. In this regard,
the automaton on each clock cycle necessarily goes into
some new state, and for a finite number of cycles the CA
reaches any state, and its graph contains a contour [4, 5],
covering all states. In general, CA can contain several
contours, so that each circuit is interpreted either as one of
the possible sequences of technological operations due to
the corresponding mode of operation, or as an independent
and simultaneous performance of a number of sets of
technological operations. CA is Moore's automaton.
Here A= (Y,X,Z,6,)), Y={y1,Y2 -, ¥a} — IS an
alphabet of states, each of which determines the state of
the actuators (IS) possessing "memory" and the state of
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the memory elements (EP); X'={xy,x,,...,x,} — input
alphabet, whose signals come from sensors that monitor
the state of the IS; Z={z,,z,,...,z,} — the output
alphabet whose signals affect the inputs of the IS; for any
state y; € Y and input word p; € X consisting of a set of
input signals, here i €{1,2,..,n},8 = 8(y;, p;) —the
function of transitions; A = A(y;,p;) — shifted output
function.

Here is a sequential decomposition of the CA in
order to represent it by the sequential operation of
automata with one internal state so that a4, a,, ..., a;

ax = (X0 80); 2 € {1,2,...,t}
Xo= Yo XX;2=(liY) XX > Z.

Then A= (1{Y,X,Z,82), where &(y;,p;)=
=64(Yy Py); P, —aset of signals that cause the transition.

Such a consideration of the function of transitions
will naturally lead to a decrease in the number of elements
in the implementation of CA. The study will be subjected
to the CA, the graph of which consists of a single circuit,
since the results obtained are easily generalized to multi-
circuit CA. Consider the set of S transitions into the set of
states Y of the automaton 4. By selecting any state as the
initial state, y; € Y; you can record transitions as follows:
Starting position Post-transition position

N - Y2
Y2 - 3
Yn1 - Yn

Yn - Ba!

Then arbitrary transition s;: y1 — y2; ¥» — ys; ... ;
Va1 — Vu; Vo — y1 — IS the forming element, and, denoting
simply s; — s, write the sequence as s, ss, 5... s = s, 5% ..., 5",
Binary operation: superposition. Associativity: the
superposition of transitions is associative. Unit element:
the initial position from which the transition is performed
is such that es = se = s. Therefore B: e, s, 5% ..., s" ' is a
semigroup with a unit or a monoid [6] and it is obvious
that » — number of states of the automaton is the order of
the monoid. Given that, and assuming that the cycle of the
automaton repeats, monoid s™ = eB can be written as:

n-1

2 2
e,s,s%, ..,s" e s, s, ...

So monoid B is cyclic, of order n. Summarizing the
above, we come to the conclusion that the set of states Y
of the automaton A can be considered as a superposition
of subsets of states or individual states. This can be seen
from the consideration of the superposition of transitions .S
of monoid B, for example, s3= s%s etc. Eachstate y; € Y
corresponds to the states of the outputs of the set Z (the
Moore automaton is considered). The set Z is divided into
two subsets

Z={z°}{Z"}},
where the set of signals that include Z5 the IS; are the set
of signals that disable the Z% 1S.
Consider the set Y ={y,, v, ..,¥,} and the
corresponding Y set, where Z = {{Q,},{Q}, ..., {Q.}}, {Q:},
i ={1,2,..,n} is the output word (a subset consisting of

the corresponding states, m signals of subsets {{Z°},
{ZF}}. Thus,

Qi = {Z7} Lz

where i,k € {1,2,..,m}. The change in output words

corresponding to the transition s denotes z. It is not
difficult to show, by analogy with monoid B, that the set
of monoids with respect to the superposition operation
C:1,z,z% .., z" 1 with the forming element - z, the unit
element » — the initial input word.

Let be the initial state y, €Y, then the
corresponding output word will be Q. The transition of s
to state is followed by a change in y, of the output word z.
The state corresponds y, to the output word Q,. The
further operation of the automaton A is similar. Therefore,
there is a relationship between monoid B and C. Monoid B
is uniquely mapped to monoid C so that

n-1

2

e,s,8% .., S i ;

f1:< e n—l)’ st# s/,
r,z,2% .., Z

and when the superposition operation is maintained the
homomorphism condition is satisfied

fl(sisj) = z'z) = f1(5i) fl(sj)~
Since it zican be equal z/ (due to possible equality
Q; and Q;), the isomorphism condition is not satisfied

fi(sH) # fi(s)) atst # s/.

Each transition s of the automaton 4 corresponds to
the input word P;. It is not difficult to show by analogy
with the set B that the set D: q,x,x%, ..,x"1- a
superposition monoid with a forming element x that shows
the change in input words during the transition s, the unit
element ¢ is the initial input word. Monoid B is uniquely
mapped to monoid D so that

(e,s,s%,.., st

f2: (q,x,xz, e x“‘1>
and when the superposition operation is maintained, the
homomorphism condition is satisfied. Since it x! can be
equal x’/ (due to the possible equality of the input words
P; and P;) the isomorphism conditionis not satisfied. thus,
monoid B is homomorphically displayed on monoids C
and D.

Set of transitions of an automaton 4 as a monoid by
a superposition operation allows you to consider the work
of the automaton as a sequential operation of the
automatons a4, a, ..., a;.

Consider a C, subset of monoid C of successive
changes in output words. The subset Z, c Z it induces
should not contain signals to turn on and off the same
actuator.

In the monoid B, the subset B, and C, corresponds
to the subset Dy, since Q; # Q;(Q;,Q; € Zy), these
subsets are isomorphic. In the monoid D, the subsets
B, and C, correspond to the subset D,. The latter does not
induce the appearance of identical input words, since the
output words of the subset repeat the positions of the
actuators (the position of the actuators is controlled by the
final switches, etc., from which the input signals. Hence,
subsets B,, C, and D, are isomorphic. A subset of
states Y, c Y, to which transitions of the subset B, lead
determines the division m of the states of the automaton 4
into equivalence classes by the consistent output words of
the subset, such that Z, m= {Y,},UY, =Y, Y, n Yy #0
ata # f.

Obtaining the partitioning of the states of a cycle
automaton by the above method is not laborious, and can
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be performed directly from any automaton description
without any additional calculations, tables and other
constructions.

Synthesis minimal graph operations. Method full
minimize described. In the first step of designing
determine the number of internal states, which equals the
number of conduction elements of the storage unit. To do
this, we carry out the partition m sequence of input
vectors P CA into disjoint subsets — blocks B such that
UB, =P, and B, N Bg =0. In the case of multi scheme
graph operations for each scheme partition is carried out
separately. The same set P,, that cause different output
sets CA z, and z,, by partitioning must be in different
blocks and not be the last elements of the neighboring
blocks B, and B, (following the first unit is considered
the last). In addition, any set P, the next block should not
be identical to the last set of the previous block B,.

The last statement can be represented as two adjacent
blocks where {..., P, - z,}, {.... P, z,,...}. Assuming

this arrangement sets in order to reduce the number of
blocks |B| , it is necessary to introduce an additional delay

in release synthesis z.

Let us illustrate the partition sets P by constructing a
graph partitioning G,. Incorporating memory element
meets the last item P, block B, ;, P, > S, (S— multiple

functions memory element inclusions). Each vertex of G,
unit is responsible B, and encompassed the loop when the
corresponding block has more than one element. If the
graph G, it comprises two peaks, one control automaton is
applied using two inverse outputs. Arcs of the graph
which are not loops forming one loop G,, if a partition
may comprise one unit. In the opposite case, the graph G,
group contains loops.

Minimal graph operations and the proof of its
minimal.

Theorem. The partition graph G, is realized by a
standard positional structure if identical combinations
P,, producing different combinations z, and z, are
assigned to different nonadjacent arcs.

In fact, to distinguish CA transitions in which two
identical sets act P,, that cause different sets z, and z, it
can only be an extension of their signal outputs signals
with ~ memory  element (ME) y, and g
(a#B; y, ¥ €Y; Y~ ME plurality of outputs).

Partitioning T it is constructed in such a way that on
the graph G, one internal state o (block B,) corresponds to
an arc that is not a loop, and its preceding adjacent loop.
Hence, for the two transitions 4,/4,, and 4,/4

i+1 J+1
column G, which belong to the loop or noose and
following its adjacent arc of the graph G,, under the action
sets in a sequence identical S, (P > z,), Which
corresponds  to  the  transition  4,/4,, and
S;1;a(B = z,), what corresponds to the transition
A;14;,, Py, =Ry, as P, =F. Those initial set of C4
z, will appear in the transition 4,/ 4,,,.
cycle before the transition 4,/ 4, .

If the same set P, and Py they are located on
contiguous arcs o and a + 1 column G,, that are not loops,
is considering a similar sequence Sy;+1 and Sy 41, We

That occurs in the

obtain extension P,y, and Py, +1 but as P,y, responsible
shutdown memory element a+1. Pgy,+1 — memory
element o+ 2, and P,= Py (recall that in the case of
standard positional structure, disconnection of any
preceding memory element off next output), we obtain
"slip" status o in state o+ 2 by state a+ 1, which is
contrary to the work cycle C4 (does not meet the stability
condition). Absence of identical input sets CA on
contiguous arcs of operations that are not loops
corresponds to satisfying a second condition for
correctness generalized vertices of operations, namely the
implementation of stability.

If the same set P, located on the arc a, that is not a
loop and its adjacent loop trail o+ 1 column G,, the
elongation P,y,, which belongs to the arc o in sequence
Sy +1 responsible memory element o + 1. The sequence
Sj;+1 elongation Py, ,. It belongs to the loop o + 1. But

as P,y, met the inclusion memory element a+ 1, the
transition 4,/ 4,,, column G set P, sequentially operates

with signals y, and y,.1, i.e. in transition 4 /A4

i+1
appears premature CA z, which corresponds to the
transition 4,/ 4, , . It is obvious that such an arrangement

is only possible if z =z (z,=2,), i.e. if in the
transitions, respectively, 4,/ 4,, and 4,/ 4,,,, on and off

one actuator (actuator switched on and off). The assertion
is proved.

Thus, the arcs of the graph G,, that are not loops,
recorded last elements of blocks, on loops — an ordered set
of the remaining elements.

Undivided decomposition methods. Consider
undivided decomposition methods developed by
M. Cherkashenko (i.e. undivided implement of the
function specified in the disjunctive normal form),
including automated scheme syntesis that makes
maximum use of logical and functional capabilities of the
selected basic apparatus (modules and components) and
lead to the minimum structure.

In developing hydropneumatic automation system
designers face the challenge of creating a minimum of the
number of logic elements. Thus solved a lot of problems,
namely an increase in reliability, cost reduction, reduction
in size, increase in speed, simplification of installation and
commissioning, simplify the operation of the system as a
whole. Here, the author suggests some developed
algorithms that allow the implementation hydropneumatic
automation scheme using the most frequently used in the
practice of their creation — distribution equipment.

The equation for the output of the distributor can be
represented as follows:

Z=X,X,)3 +(x, +‘xj)y4 . @

It should be noted that whenx; =0, z =Xy, + X, ;.

It will be shown that at the outlet may be
implemented of 55 logical functions. The repetition-free
basis (with equal ease of use of the direct and inverse
values of the arguments) such apparatus provides the
following functions and works sum of three arguments.

It is necessary to make an important statement.
Practice shows construction hydropneumatic automation
schemes implementing logic functions nonrepeating
expediently carried out separately decomposition
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methods, functions and implementation repetition of
arguments in different terms is advantageously carried out
by methods undivided decomposition.

Realization of schemes by using undivided
decomposition pneumatic distributors associated with
decomposition of logic functions of two variables. For
more than a simple expansion designed multifunctional
logic modules, which in turn are universal for repetition-
free functions. Consider the generalized uses of logic
modules to implement pneumatic distributors schemes on
distribution apparatus.

The function at the output of the module is of the
form

2=%%,/,(0,0)+%x, 4,(0,1) + XX, /,(1,0) + x.x, /3 (1,1) .(2)

Such a function is formula decomposition of logic
functions in two variables. Remaining after the expansion
of the function in this case is lowered by two orders of
magnitude. The use of such devices allows for easy
synthesis, however, does not always produce the desired
result, as in the structure already contains three of the
distributor. When the expansion of the function using the
module [7] a =3(1,1), b = f2(1,0), ¢ = f1(0,1), d == f4(0,0).
In order to bring the formula (1) to form (2) should be
compared y3=/£,(1,0), and y, =X, (0,0)+x f;(L,1)+
+%,x,£4(0,).

It is easy to verify that when substituted into the
formula (1) for the corresponding values y; and y,, of
formula (1) and (2) coincide. Thus, the synthesis scheme
in this case reduces to the determination of residual
functions for inputs y; and y, and natural selection
variable expansions for inputs x; and x;.

The equation for the output of the module is as
follows:

z= (fzf/ +xix/')y1 +xiij3 +)_Cixjy2 . )

In order to bring the formula (3) to (2), should be
Compared V3 :ﬁ(l!o)v Y2 :.fi(ov]-)’ N = xifS (111) + Zfo (O!O)
It is easy to show that in this case the functions (2) and (3)
coincide. Naturally there residual function is easier than
for the decomposition in the case of formula (1).
Furthermore, if the residual function f,(0,0) = f3(1,1), then
y1 =/0(0,0) = f3(1,1) implemented without additional
logical operations, which greatly simplifies the residual
function.

Thus, the conducted studies showed the strict
compliance of the scientific direction "Synthesis of
minimum control schemes of hydro- and pneumatic drive
systems" developed by the author with the point of view
of general algebra, algebra of logic, graph theory and
automata theory. The synthesis of the minimum graph of
operations, which is a mathematical model of the control
system, has been proved. The legitimacy of the methods

of undivided decomposition of equations describing the
scheme of the control system has been proved. The
following literature may be interesting to read [8-12].
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