Minimization of phase noise in scaled device coupled mode oscillators
DOI:
https://doi.org/10.1109/ICATT.2007.4425114Keywords:
1/ƒ, RF, SiGe HBTs, VCOAbstract
The performance of the electronic system strongly depends on the speed of devices, and device scaling has driven this momentum towards achieving faster speed and high level of integration. This paper describes the impact of phase noise in scaled SiGe HBTs coupled mode oscillators topology, which has recently emerged as a strong contender for RF and mixed signal applications. The relative contribution of the broadband (thermal and shot noise) and low frequency (1/fnoise) noise sources are examined with respect to the device scaling. A method of minimizing the phase noise with respect to the device scaling is discussed, and demonstrated for planar coupled resonators based VCO. The circuit topology is not limited to these frequencies, and easily amenable for integration in MMIC form.References
NIIU, G.; TANG, J.; FENG, Z.; JOSEPH, ALVIN J.; HARAME, DAVID L. Scaling and Technological Limitations of 1/f Noise and Oscillator Phase Noise in SiGe HBTs. IEEE Trans. Microwave Theory Tech., Feb. 2005, v.53, n.2, p.506-514, doi: http://dx.doi.org/10.1109/TMTT.2004.840768.
ROHDE, U.L.; PODDAR, A.K.; SCHOEPF, J.; REBEL, R.; PATEL,P. Low Noise Low Cost Ultra Wide-band N-Push VCO. IEEE MTT-S Int. Microwave Symp. Dig., 12-17 June 2005. IEEE, 2005, doi: http://dx.doi.org/10.1109/MWSYM.2005.1516884.
ROHDE, U.L.; PODDAR, A.K.; BOCK, G. The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization. John Wiley & Sons Inc., 2005, doi: http://dx.doi.org/10.1002/0471727172.
XIAO, H.; TANAKA, T.; AIKAWA, M. A low phase noise Ku-band push-push oscillator using slot ring resonator. IEEE MTT-S Int. Microwave Symp. Dig., 6-11 June 2004. IEEE, 2004, v.3, p.1333-1336, doi: http://dx.doi.org/10.1109/MWSYM.2004.1338814.
PODDAR, A.K. A Novel Approach for Designing Integrated Ultra Low Noise Microwave Wideband Voltage Controlled Oscillators. Dr.-Ing. Dissertation, TU-Berlin, Germany, 14 December 2004.
HAJIMIRI, A.; LEE, T.H. A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, Feb. 1998, v.33, n.2, p.179-194, doi: http://dx.doi.org/10.1109/4.658619.
ROHDE, U.L.; PODDAR, A.K.; REBEL, R. Integrated Low Noise Microwave Wideband Push-Push VCO. US Patent No. 7,088189, Aug 2006.
CHANG, H.-C.; CAO, X.; MISHRA, U.K.; YORK, R.A. Phase noise in coupled oscillators: Theory and experiment. IEEE Trans. Microwave Theory Tech., May 1997, v.45, n.5, p.604-615, doi: http://dx.doi.org/10.1109/22.575575.
ROHDE U.L.; PODDAR, A.K. MEMS Enabled VCO for Wireless Connectivity. Proc. of GigaHertz2005, 8-9 Nov. 2005, Sweden.
ROMISCH, S.; KITCHING, J.; FERRE-PIKAL, E.S.; HOLLBERG, L.; WALLS, F.L. Performance Evaluation of an Optoelectronic Oscillator. IEEE Trans. Ultrason. Ferr. Frequency Control, Sept. 2000, v.47, n.5, p.1159-1165, doi: http://dx.doi.org/10.1109/58.869060.
PODDAR, A.K.; BANSAL, J.K.; PANDEY, K.N. Millimeter Wave Evanescent Mode Power Combiner-Gunn Oscillator in Suspended Stripline Configuration. Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, MMET, 2-5 Jun. 1998, Kharkov, Ukraine. IEEE, 1998, v.1, p.384-386, doi: http://dx.doi.org/10.1109/MMET.1998.709985.
LEIER, R. SiGe Silences YIG Oscillator Phase Noise. Microwave & RF, Jan. 2006, p.79-82.
ROHDE, U.L.; PODDAR, A.K. Impact of Device Scaling on VCOs Phase Noise in SiGe HBTs. Proc. of Int. Semiconductor Device Research Symp., ISDRS 2005, 7-9 Dec. 2005, Bethesda, MD, USA. IEEE, 2005, p.330-331, doi: http://dx.doi.org/10.1109/ISDRS.2005.1596120.
HARAME, D.; AHLGREN, D.C.; COOLBAUGH, D.D.; DUNN, J.S.; FREEMAN, G.G.; GILLIS, J.D.; GROVES, R.A.; HENDERSEN, G.N.; JOHNSON, R.A.; JOSEPH, A.J.; SUBBANNA, S.; VICTOR, A.M.; WATSON, K.M.; WEBSTER, C.S.; ZAMPARDI, P.J. Current status and future trends of SiGe BiCMOS Technology. IEEE Trans. Electron Devices, Nov. 2001, v.48, n.11, p.2575-2594, doi: http://dx.doi.org/10.1109/16.960385.
ROHDE, U.L.; PODDAR,A.K. Wideband voltage controlled oscillators employing evanescent mode coupled resonators. US Patent No. 71803812, Feb. 2007.
CRESSLER, J.D.; NIU, G. Silicon-Germanium Heterojunction Bipolar Transistors. Norwood, MA: Artech House, 2003.
NIU, G.; CRESSLER, J.D.; ZHANG, S.; ANSLEY, W.E.; WEBSTER, C.S.; HARAME, D.L. A unified approach to RF and microwave noise parameter modeling in bipolar transistors. IEEE Trans. Electron Devices, Nov. 2001, v.48, n.11, p.2568-2574, doi: http://dx.doi.org/10.1109/16.960384.
ROHDE, U.L.; PODDAR,A.K. Tunable Frequency, Low Phase Noise and Low Thermal Drift Oscillator. US Patent No. 7196591, March 2007.
VEMPATI, L.; CRESSLER, J.D.; BABCOCK, J.A.; JAEGER, R.C.; HARAME, D.L. Low-frequency noise in UHF/CVD epitaxial Si and SiGe bipolar transistors. IEEE J. Solid-State Circuits, Oct. 1996, v.31, n.10, p.1458-1467, doi: http://dx.doi.org/10.1109/4.540056.
PODDAR, A.K.; PANDEY, K.N. Evanescent Mode Power Combiner in SSL Configuration. Proc. of 8th IEEE Int. Symp. on High Performance Electron Devices for Microwave and Optoelectronic Application, Nov. 2000, UK. 2000, p.196-201.
KHANNA, A.P.S. (PAUL). Microwave Oscillators: The State of The Technology. Microwave Journal, Apr. 2006, p.22-42.
ROMISCH, S.; LUTWAK, R. Low-Power, 4.6-GHz, Stable Oscillator for CSAC. Proc. of IEEE Int. Frequency Control Symp., 4-7 June 2006, Miami, FL, USA. IEEE, 2006, p.448-451, doi: http://dx.doi.org/10.1109/FREQ.2006.275427.
PODDAR, A.K.; KOUL, S.K.; BHAT, BHARTHI. Millimeter Wave Evanescent Mode Gunn Diode Oscillator in Suspended Stripline Configuration. Proc. of 22nd Int. Conf. IR&MM Wave, July 1997, USA. 1997, p.265-266.
SUN, SHENG; ZHU, LEI. Guided-Wave Characteristics of Periodically Nonuniform Coupled Microstrip Lines-Even and Odd Modes. IEEE Trans. Microwave Theory Tech., Apr. 2005, v.53, n.4, p.1221-1227, doi: http://dx.doi.org/10.1109/TMTT.2005.845709.
CHEN, YI-JAN E.; KUO, WEI-MIN L.; JIN, Z.; LEE, J.; TRETIAKOV, Y.V.; CRESSLER, J.D.; LASKAR, J.; FREEMAN, G. A Low-Power Ka-Band Voltage-Controlled Oscillator Implemented in 200-GHz SiGe HBT Technology. IEEE Trans. Microwave Theory Tech., May 2005, v.53, n.5, p.1672-1681, doi: http://dx.doi.org/10.1109/TMTT.2005.847063.