Application of wavelet transform to the solution of scattering problems
DOI:
https://doi.org/10.1109/ICATT.2007.4425153Keywords:
wavelet, basis functions, fractal wire antennas, integral equationAbstract
In this work the application of wavelets for the increase in the efficiency of the solution of an integral equation, which describes a scattering problem is considered. Examples of fractal wire antennas calculations are used to show the applicability of wavelet basis functions. The precision of the obtained results is estimated.References
TSAI, L. A numerical solution for the near and far fields of an annular ring of magnetic current. IEEE Trans. Antennas Propag., Sept. 1972, v.20, n.5, p.569-576, doi: http://dx.doi.org/10.1109/TAP.1972.1140283.
DAUBECHIES, I. Ten Lectures on Wavelets. CBMS-NSF series in Applied Maths #61. Philadelphia: SIAM, 1992.
PRESS, W.H.; TEUKOLSKY, S.A.; VETTERLING, W.T.; FLANNERY, B.P. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. New York: Cambridge Univ. Press, 1992.
WAGNER, R.L.; CHEW, W.C. A Study of Wavelets for the Solution of Electromagnetic Integral Equations. IEEE Trans. Antennas Propag., Aug. 1995, v.43, n.8, p.802-810, doi: http://dx.doi.org/10.1109/8.402199.
ALPERT, B.; BEYLKIN, G.; COIFMAN, R.; ROKHLIN, V. Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput., Jan. 1993, v.14, n.1, p.159-184, doi: http://dx.doi.org/10.1137/0914010.