Diffraction of light wave on bi-dimensionally periodic metallic nanogratings. Theoretical study

Authors

  • I. A. Kazmin Southern Federal University, Russian Federation
  • Oleg S. Labunko Rostov Radiofrequency Center, Russian Federation
  • Aleksander M. Lerer Southern Federal University, Russian Federation
  • V. I. Makhno Southern Federal University, Russian Federation
  • P. V. Makhno Southern Federal University, Russian Federation
  • D. E. Zelenchuk Queen-Belfast University, United Kingdom

DOI:

https://doi.org/10.1109/ICATT.2007.4425167

Keywords:

Galerkin method, nanostructured metallic gratings, approximate boundary conditions, extraordinary transmission

Abstract

The paper suggests a model to address the problem of enhanced optical transmission through doubly periodic metallic nanostructures. The theoretical model combines integral equations method with impedance boundary conditions in rigorous fashion and enables modeling nanostructures with apertures of different shape. Numerical results obtained with the model have been shown to be in a good agreement with experimental ones. A comparison between square and circular aperture array enhanced transmission properties has been carried out as well.

References

SALOMON, L.; GRILLOT, F.; ZAYATS, A.V.; DE FORNEL, F. Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film. Phys. Rev. Lett., 2001, v.86, n.6, p.1110, doi: http://dx.doi.org/10.1103/PhysRevLett.86.1110.

MARTIN-MORENO, L.; GARCIA-VIDAL, F.J.; LEZEC, H.J.; PELLERIN, K.M.; THIO, T.; PENDRY, J.B.; EBBESEN, T.W. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett., 2001, v.86, n.6, p.1114, doi: http://dx.doi.org/10.1103/PhysRevLett.86.1114.

SCHROTER, U.; HEITMANN, D. Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B, 1998, v.58, n.23, p.15419, doi: http://dx.doi.org/10.1103/PhysRevB.58.15419.

http://www.luxpop.com.

POPOV, E.; NEVI'ERE, M.; ENOCH, S.; REINISCH, R. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B, 2000, v.62, n.23, p.16100, doi: http://dx.doi.org/10.1103/PhysRevB.62.16100.

SCHUCHINSKY, A.G.; ZELENCHUK, D.E.; LERER, A.M.; DICKIE, R. Full-wave analysis of layered aperture arrays. IEEE Trans. Antennas Propag., Feb. 2006, v.54, n.2, p.490-502, doi: http://dx.doi.org/10.1109/TAP.2005.863086.

VAINSHTEIN, L.A. The Diffraction Theory and the Method of Factorization. Moscow: Soviet Radio, 1966, 432 p.

NIKOLSKY, V.V. Electrodynamics and Propagation of Radio Waves. Moscow, 1989 [in Russian].

Published

2007-09-22