Nufft-based imaging of vegetation on graphic cards
DOI:
https://doi.org/10.1109/ICATT.2009.4435173Keywords:
tomography, imaging, NUFFT, GPU, vegetation, fast backprojectionAbstract
We present an algorithm for the fast tomography of vegetation, based on a Radon mathematical setting and on the combined use of advanced processing algorithms (Non-Uniform FFTs) and hardware resources (Graphic Processing Units - GPUs).
The algorithm performance is firstly numerically estimated, showing the favorable trade off between faithfulness and speed, and highlighting the convenience of the GPU implementation against that on CPU. Experimental results on anechoic chamber data complete the algorithm assessment.
References
HORN, R.; FISHER, J.; MARINO, A.; NANNINI, M.; PARTINGTON, K.; WALKER, N.; WOODHOUSE, I. The SARTOM project: Tomography for enhanced target detection for foliage penetrating airborne SAR (First-year results). Proc. of the ElectroMagn. Remote Sens., 10-11 Jul. 2007, Edinburgh, UK. 2007.
LANG, R.H. Scattering from a layer of discrete random medium over a random interface: application to microwave backscattering from forests. Waves Random Complex Media, Apr. 2004, v.14, n.2, p.S359-S391.
CAPOZZOLI, A.; CURCIO, C.; D’ELIA, G.; LISENO, A.; MELE, A. The Radon transform for the tomography of vegetated areas. Proc. of Loughborough Antennas Prop. Conf., 17-18 Mar., Loughborough, England, p.321-324.
DESAI, M.D.; JENKINS, W.K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. Image Proc., Oct. 1992, v.1, n.4, p.505-517.
FOURMONT, K. Non-equispaced fast Fourier transforms with application to tomography. J. of Fourier Anal. Appl., Sept. 2003, v.9, n.5, p.435-450.
FRIGO, M.; JOHNSON, S.G. The design and implementation of FFTW3. Proc. IEEE, Feb. 2005, v.93, n.2, p.216-231.