Signal coherence and coherence-induced effects on array output in multimode transmission channels
DOI:
https://doi.org/10.1109/ICATT.2013.6650692Keywords:
spatial coherence, coherence loss, underwater sound channel, antenna array, cross-modal correlations, array output, spatial resolutionAbstract
It is well known that the statistical effects of long-range signal propagation in random channels generally lead to considerable degradation of both the signal coherence and the array output. In random-inhomogeneous underwater sound channels, these effects are of a primary importance if a large horizontal array is used for high-resolution operation in spatial domain. The key physical effect in such a scenario is known to be the range-dependent cross-modal coherence loss caused by multiple sound scattering by random channel inhomogeneities, both volume and windy surface ones. In this pa-per, we demonstrate numerically how and why the horizontal array output dramatically degrades if the received signal consists of a large number of partially-correlated normal modes. From the point of view of general statistical antenna theory, the results present-ed are considered to be a further development, with application to the multimode transmission channels.References
SHIFRIN, Y.S. Statistical Antenna Theory. USA: Golem Press, 1971.
IANIELLO, J.P. Recent developments in sonar signal processing. IEEE Signal Processing Mag., July 1998, p.27-40.
ELISEYEVNIN, V.A. On the horizontal antenna operation in a water layer. Sov. Phys. Acoust., 1979, v.25, p.227-233.
ELISEYEVNIN, V.A. Source direction determine in a waveguide by the use of horizontal linear antenna. Sov. Phys. Acoust., 1996, v.42, p.208-211.
SAZONTOV, A.G.; FARFEL, V.A. On the horizontal array operation in random-inhomogeneous ocean. Sov. Phys. Acoust., 1990, v.36, p.130-136.
USCINSKI, B.J.; REEVE, D.E. The effect of ocean inhomogeneities on array output. J. Acoust. Soc. Am., 1990, v.87, p.2527-2534, doi: http://dx.doi.org/10.1121/1.399045.
COX, H. Line array performance when the signal coherence is spatially dependent. J. Acoust. Soc. Am., 1973, v.54, p.1743-1746, doi: http://dx.doi.org/10.1121/1.1914473.
MORGAN, D.R.; SMITH, T.W. Coherence effects on the detection performance of quadratic array processors, with application to large-array matched-field beamforming. J. Acoust. Soc. Am., 1990, v.87, p.737-747, doi: http://dx.doi.org/10.1121/1.398888.
GORODETSKAYA, E.Y.; MALEKHANOV, A.I.; TALANOV, V.I. Modelling of optimal array signal processing in underwater sound channels. Sov. Phys. Acoust., 1992, v.38, p.571-575.
GORODETSKAYA, E.Y.; MALEKHANOV, A.I.; SAZONTOV, A.G.; FARFEL, V.A. Effects of long-range sound propagation in random ocean on horizontal array gain loss. Sov. Phys. Acoust., 1996, v.42, p.543-549.
GORODETSKAYA, E.Y.; MALEKHANOV, A.I.; SAZONTOV, A.G.; VDOVICHEVA, N.K. Deep-water acoustic coherence at long ranges: Theoretical predictions and effects on large-array signal processing. IEEE J. Oceanic Eng., 1999, v.24, n.2, p.156-171, doi: http://dx.doi.org/10.1109/48.757268.
CAREY, W.M. The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water. J. Acoust. Soc. Am., 1998, v.104, p.831-837, doi: http://dx.doi.org/10.1121/1.423357.
BREKHOVSKIKH, L.M.; LYSANOV, Y.P. Fundamentals of Ocean Acoustics. New York: Springer, 1991, doi: http://dx.doi.org/10.1007/978-3-662-07328-5.
VIROVLYANSKY, A.L.; KOSTERIN, A.G.; MALAKHOV, A.N. Modal fluctuations in a canonical underwater sound channel. Sov. Phys. Acoust., 1989, v.35, p.229-235.
ARTELNYI, V.V.; RAEVSKII, M.A. Intermodal correlations of the acoustic field in a waveguide with random volume inhomogeneities. Sov. Phys. Acoust., 1989, v.35, p.451-454.
SAZONTOV, A.G.; MATVEYEV, A.L.; VDOVICHEVA, N.K. Acoustic coherence in shallow water: Theory and observation. IEEE J. Oceanic Eng., 2002, v.27, n.3, p.653-664, doi: http://dx.doi.org/10.1109/JOE.2002.1040948.