Theoretical investigation of plasmonic a nowaveguide structures and photonic crystals
DOI:
https://doi.org/10.1109/ICATT.2013.6650719Keywords:
diffraction grating, complex dielectric permittivity, integral equation, Galerkin method, nanowaveguide, photonic crystal, propagation constant, band gapAbstract
A vector integral-differential equation to describe electromagnetic waves propagation in nanowaveguides and photonic crystals containing thin metal layers is developed. Exact solution of the equation is obtained with Galerkin method taking into account complex dielectric permittivity of metals in optical range. A simple method to find complex propagation constant for low-loss waveguide structures is developed and proved. Surface plasmon-polariton (SPP) waves were simulated in the structures under consideration.References
BERINI, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B, 2000, v.61, p.10484-10503, doi: http://dx.doi.org/10.1103/PhysRevB.61.10484.
LIU, L.; HAN, Z.; HE, S. Novel surface plasmon waveguide for high integration. Opt. Express, 2005, v.13, p.6645-6650, doi: http://dx.doi.org/10.1364/OPEX.13.006645.
BOZHEVOLNYI, S.I.; VOLKOV, V.S.; DEVAUX, E.; EBBESEN, T.W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett., 2005, v.95, p.046802, doi: http://dx.doi.org/10.1103/PhysRevLett.95.046802.
GRAMOTNEV, D.K.; PILE, D.F.P. Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface. Appl. Phys. Lett., 2004, v.85, p.6323-6325, doi: http://dx.doi.org/10.1063/1.1839283.
NOVIKOV, I.V.; MARADUDIN, A.A. Channel polaritons. Phys. Rev. B, 2002, v.66, p.035403, doi: http://dx.doi.org/10.1103/PhysRevB.66.035403.
YABLONOVICH, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 1978, v.58, p.2059, doi: http://dx.doi.org/10.1103/PhysRevLett.58.2059.
BANKOV, E. Electomagnitnye Kristally. Moscow: FIZMATLIT, 2010 [in Russian].