Development of the planar low-voltage cyclotron resonance maser with a sheet helical electron beam
DOI:
https://doi.org/10.1109/ICATT.2013.6650731Keywords:
planar MIG, confocal cavity, sheet helical electron beam, planar low-voltage CRM, pitch-factorAbstract
The design of a planar low-voltage cyclotron resonance maser (CRM) with the con-focal cavity, its geometry and results of the trajectory analysis for the planar magnetron - injection gun (MIG) are presented. Simulation results of dispersive characteristic of the confocal cavity and the distribution of an electromagnetic field for various cavity modes are described. The low-voltage CRM is designed for the frequency of 8 GHz with the water cooling magnetic system. Results of a computer simulation of wave particle interaction in the low-voltage CRM are also given.References
PONOMARENKO, S.; KISHKO, S.A.; ZAVERTANNIY, V.V.; KHUTORYAN, E.M.; LOPATIN, I.V.; YEFIMOV, B.P.; KULESHOV, A.N. 400 GHz continuous-wave clinotron oscillator. IEEE Trans. Plasma Science, Jan. 2013, v.41, n.1, p.82-86, doi: http://dx.doi.org/10.1109/TPS.2012.2226247.
GLYAVIN, MIKHAIL Y.; GINZBURG, NAUM S.; GOLDENBERG, ARKADY L.; DENISOV, GREGORY G.; LUCHININ,ALEXEY G.; MANUILOV, VLADIMIR N.; ZAPEVALOV, VLADIMIR E.; ZOTOVA, IRINA V. THz gyrotrons: status and possible optimizations. Terahertz Science and Technology, June 2012, v.5, n.2, p.67-77.
LUCHININ, A.G.; NUSINOVICH, G.S. Comparison of efficiency and output power of CRM-monotrons with different electrodynamic systems. Microwave Electronics, 1975, n.11, p.26-35.
VLASOV, S.N.; LUCHININ, A.G.; NUSINOVICH, G.S.; ORLOVA, I.M.; USOV, V.G.; FLYAGIN, V.A.; HIJNIAK, V.I. Gyrotrons with a two-mirrors cavity. Compilation Gyrotron, 1980, p.160-170.
HU, WEN; SHAPIRO, M.A.; KREISCHER, K.E.; TEMKIN, R.J. 140-GHz gyrotron experiments based on a confocal cavity. IEEE Trans. Plasma Science, 1998, v.26, n.3, p.366-374, doi: http://dx.doi.org/10.1109/27.700767.
GINZBURG, N.; ZOTOVA, I.; SERGEEV, A.; ZASLAVSKY, V.; ZHELEZNOV, I. High-power terahertz-range planar gyrotrons with transverse energy extraction. Phys. Rev. Lett., 2012, v.108. p.105101.1-105101.4, doi: http://dx.doi.org/10.1103/PhysRevLett.108.105101.
KISHKO, S.; PONOMARENKO, S.; KULESHOV, A.; YEFIMOV, B. Magnetron injection gun for a planar cyclotron resonance maser. Vestnik KhNU, Ser. Radio Physics and Electronics, 2012, v.1038, n.21, p.83-88.
GOLDENBERG, A.L.; GLYAVIN, M.Y.; ZAVOLSKY, N.A.; MANUILOV, V.N. Technologycal gyrotron with low operating voltage. Izv. VUZ. Radiophysics, 2005, v.48, n.10-11, p.836-841.
KISHKO, S.; KULESHOV, A.; GLYAVIN, M.; ZOTOVA, I.; ZHELEZNOV, I.; GINZBURG, N.; MANUILOV, V.; ZASLAVSKY, V. Development of 75 GHz planar gyrotron with transverse energy extraction. Radiotekhnika i Elektronika, in press.
KISHKO, S.A.; PONOMARENKO, S.S.; KULESHOV, A.N.; YEFIMOV, B.P.; GLYAVIN, M.Y.; ZOTOVA, I.V.; ZHELEZNOV, I.V.; GINZBURG, N.S.; MANUILOV, V.N.; ZASLAVSKY, V.Y. Low-voltage planar cyclotron resonance maser based on a confocal cavity. Proc. of 38th Int. Conf. IRMMW-THz, 1-6 Sept. 2013, Mainz, Germany. IEEE, 2013, p.1-2, doi: http://dx.doi.org/10.1109/IRMMW-THz.2013.6665645.