Method of hypersingular integral equations in diffraction problem by strip grating of rectangular split-ring resonators
DOI:
https://doi.org/10.1109/ICATT.2013.6650798Keywords:
hypersingular integral equation, pseudo-differential operator, Fredholm equation, split-ring resonatorAbstract
Electromagnetic waves diffraction problem by finite strip grating which consists of rectangular split-ring resonators of zero thickness is considered. The method of hypersingular integral equations is used. The hypersingular integral equations are obtained with the use of the theory of pseudo-differential operators. The dependencies of the reflection coefficient as a function of wave number and directional patterns of reflected field are presented.References
MAUE, A.W. Toward formulation of a general diffraction problem via an integral equation. Zeitschrift fur Physik, 1949, v.126, p.601-618, doi: http://dx.doi.org/10.1007/BF01328780.
HONL, H.; MAUE, A.W.; WESTPFAHL, K. Theorie der Beugung, in Handbuch der Physik, Vol. 25. Berlin: Springer-Verlag, 1961.
GANDEL, Y.V.; KONONENKO, S.O. Singular and hypersingular integral equations techniques for gyrotron coaxial resonators with a corrugated insert. Int. J. Infrar. Millim. Wave, 2007, v.28, n.4, p.267-274, doi: http://dx.doi.org/10.1007/s10762-007-9198-8.
IL'INSKIY, A.S.; SMIRNOV, Y.G. Diffraction of Electromagnetic Waves by Conducting Thin Screens (Pseudifferential Operators in Diffraction Problems). Moscow: IPRJR, 1996, 176 p. [in Russian].
BULYGIN, V.S.; GANDEL, Y.V. Electromagnetic wavediffraction problem by planar screen. Proc. of 7th Int. Seminar on Discrete Singularities Methods in Mathematical Physics Problems, Orel, Russia, 2009, p.24-30.
KALIBERDA, M.E.; LITVINENKO, L.N.; POGARSKII, S.A. Operator method in the analysis of electromagnetic wave diffraction by planar screens. J. Comm. Technol. Electron., 2009, v.54, n.9, p.975-981, doi: http://dx.doi.org/10.1134/S1064226909090010.
KALIBERDA, M.E.; LITVINENKO, L.N.; POGARSKY, S.A. Diffraction of H0m and E0m modes by a system of axially symmetric discontinuities in a coaxial circuit. J. Comm. Technol. Electron., 2010, v.55, n.5, p.505-511, doi: http://dx.doi.org/10.1134/S1064226910050037.
LYTVYNENKO, L.M.; KALIBERDA, M.E.; POGARSKY, S.A. Solution of waves transformation problem in axially symmetric structures. Frequenz, 2012, v.66, n.1-2, p.17-25, doi: http://dx.doi.org/10.1515/freq.2012.012.