Aperture oscillations, enhanced transmission and polarization plane rotation in the light of natural oscillations spectrum
DOI:
https://doi.org/10.1109/ICATT.2013.6650814Keywords:
C2(4) symmetry, plane-chiralslotted irises, eigenoscillations, aperture oscillations, enhanced transmission, fringing fields, optical activity, polarization rotatorAbstract
The physical background of resonance phenomena such as the “enhanced trans-mission” (through below cutoff holes) and the “optical activity” (polarization plane rotation) is shown by the eigenoscillation analysis of various objects with C2 or C4symmetry in a square waveguide. Units of three kinds, namely waveguide bifurcations (plane junctions), double-slot or four-slot plane-chiral irises and composite conjugated plane-chiral irises in the square waveguide are considered. New compact units based on the fringing field interaction and aimed to rotate the polarization plane by 90° (in double-slot case) or by an arbitrary angle (in four-slot case) areproposed. The conclusions are completely applicable to double-periodical structures, as a possible base for development of metamaterials.References
WEGENER M.; ZHELUDEV, N. Artificial chiral materials. J. Opt. A: Pure Appl., 2009, n.11, p.070201.
KIRILENKO, A.A.; PEROV, A.O. On the common nature of the enhanced and resonance transmission through the periodical set of holes. IEEE Trans AP, 2008, v.56, n.10, p.3210-3216, doi: http://dx.doi.org/10.1109/TAP.2008.929437.
KOLMAKOVA, N.G.; PEROV, A.O.; SENKEVICH, S.L.; KIRILENKO, A.A. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectronics and Communications Systems, 2011, v.54, n.3, p.115-123, doi: http://dx.doi.org/10.3103/S0735272711030010.
KOLMAKOVA, N.G.; KIRILENKO, A.A.; PROSVIRNIN, S.L. Flat chiral irises in a square waveguide and displays of optical activity. Radio Physics and Radio Astronomy, 2011, v.16, n.1, p.70-81.
KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A. Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises. Radioelectronics and Communications Systems, 2012, v.55, n.4, p.175-177, doi: http://dx.doi.org/10.3103/S073527271204005X.
RAGAN, G.L. Microwave Transmission Circuits. New York: Dover, 1965.
ZHAO, R.; ZHANG, L.; ZHOU, J.; KOSCHNY, T.; SOUKOULIS, C.M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev., 2011, v.B83, p.035105, doi: http://dx.doi.org/10.1103/PhysRevB.83.035105.
MUNK, B.A. Frequency Selective Surfaces: Theory and Design. New York; Wiley & Sons, 2000, doi: http://dx.doi.org/10.1002/0471723770.
DERKACH, V.; KIRILENKO, A.; SALOGUB, A.; PRIKOLOTIN, S.; KOLMAKOVA, N.; OSTRIZHNYI, Y. Giant optical activity in artificial plane-chiral structures. Proc. of MSMW13, Kharkiv, 2013, CD.