Aperture oscillations, enhanced transmission and polarization plane rotation in the light of natural oscillations spectrum

Authors

  • Andrey O. Perov Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-2847-8164
  • Anatoliy A. Kirilenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8717-5334
  • Nataliya G. Kolmakova (Don) Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • S. A. Prikolotin Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • Sergey L. Senkevich Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.1109/ICATT.2013.6650814

Keywords:

C2(4) symmetry, plane-chiralslotted irises, eigenoscillations, aperture oscillations, enhanced transmission, fringing fields, optical activity, polarization rotator

Abstract

The physical background of resonance phenomena such as the “enhanced trans-mission” (through below cutoff holes) and the “optical activity” (polarization plane rotation) is shown by the eigenoscillation analysis of various objects with C2 or C4symmetry in a square waveguide. Units of three kinds, namely waveguide bifurcations (plane junctions), double-slot or four-slot plane-chiral irises and composite conjugated plane-chiral irises in the square waveguide are considered. New compact units based on the fringing field interaction and aimed to rotate the polarization plane by 90° (in double-slot case) or by an arbitrary angle (in four-slot case) areproposed. The conclusions are completely applicable to double-periodical structures, as a possible base for development of metamaterials.

References

WEGENER M.; ZHELUDEV, N. Artificial chiral materials. J. Opt. A: Pure Appl., 2009, n.11, p.070201.

KIRILENKO, A.A.; PEROV, A.O. On the common nature of the enhanced and resonance transmission through the periodical set of holes. IEEE Trans AP, 2008, v.56, n.10, p.3210-3216, doi: http://dx.doi.org/10.1109/TAP.2008.929437.

KOLMAKOVA, N.G.; PEROV, A.O.; SENKEVICH, S.L.; KIRILENKO, A.A. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectronics and Communications Systems, 2011, v.54, n.3, p.115-123, doi: http://dx.doi.org/10.3103/S0735272711030010.

KOLMAKOVA, N.G.; KIRILENKO, A.A.; PROSVIRNIN, S.L. Flat chiral irises in a square waveguide and displays of optical activity. Radio Physics and Radio Astronomy, 2011, v.16, n.1, p.70-81.

KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A. Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises. Radioelectronics and Communications Systems, 2012, v.55, n.4, p.175-177, doi: http://dx.doi.org/10.3103/S073527271204005X.

RAGAN, G.L. Microwave Transmission Circuits. New York: Dover, 1965.

ZHAO, R.; ZHANG, L.; ZHOU, J.; KOSCHNY, T.; SOUKOULIS, C.M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev., 2011, v.B83, p.035105, doi: http://dx.doi.org/10.1103/PhysRevB.83.035105.

MUNK, B.A. Frequency Selective Surfaces: Theory and Design. New York; Wiley & Sons, 2000, doi: http://dx.doi.org/10.1002/0471723770.

DERKACH, V.; KIRILENKO, A.; SALOGUB, A.; PRIKOLOTIN, S.; KOLMAKOVA, N.; OSTRIZHNYI, Y. Giant optical activity in artificial plane-chiral structures. Proc. of MSMW13, Kharkiv, 2013, CD.

Published

2014-02-19

Issue

Section

Microwave components and circuits, fiber-optic links