МОДЕЛЮВАННЯ ЕЛЕКТРИЧНИХ ПОЛІВ В ОКОЛІ ЕЛЕКТРОПРОВІДНИХ СТРИЖНІВ – БЛИСКАВКОПРИЙМАЧІВ
Основний зміст сторінки статті
Анотація
Блок інформації про статтю
Посилання
Cooray V. Lightning Protection. London: The Institution of Engineering and Technology, 2010. 1036 р.
Moore C. B., RisonW., Mathis J., Aulich G. Lightning rod improvement studies. Journal of applied meteorology. 2000. Vol. 39. P. 593–609.
Moore C. B, Aulich G., Rison W. Measurement of lightning rod responses to nearby strikes. Geophys. Res. Lett. 2000. Vol. 27, no. 10. P. 1487–1490.
Bazelyan E. M., Raizer Yu. P. Lightning Physics and Lightning Protection. Bristol: IOP Publishing, 2000. 320 p.
Petrov N. I., Waters R. T. Determination of the striking distance of
lightning to earthed structures. Proc. R. Soc. 1995. Vol. 450. P. 589–601.
Akyuz M., Cooray V. The franklin lightning conductor: conditions necessary for the initiation of a connecting leader. Journal of Electrostatics. 2001. Vol. 51–52. P. 319–325.
Cole M. T., Teo K. B. K., Groening O., Gangloff L., Legagneux P., Milne W. I. Deterministic cold cathode electron emission from carbon nanofibre arrays. Scientific Reports. 2014. Vol. 4. P. 1–5.
Park S., Gupta A. P., Yeo S. J., Jung J., Paik S. H., Mativenga M., Kim S. H., Shin J. H., Ahn J. S., Ryu J. Carbon nanotube field emitters synthesized on metal alloy substrate by PECVD for customized compact field emission devices to be used in X-ray source applications. Nanomaterials. 2018. Vol. 8. P. 378.
Bocharov G. S., Eletskii A. V., Grigory S. Theory of carbon nanotube (CNT)-based electron field emitters. Nanomaterials. 2013. Vol. 3. P. 393–442.
Collins C. M., Parmee R. J., MilneW. I., Cole M. T. High performance field emitters. Advanced Science. 2016. Vol. 3. P. 8.
Berenger J. P. Perfectly matched layer for the FDTD solution of wave–structure interaction problems. IEEE Trans. Antennas and Propag. 1996. Vol. 44. P. 110–117.
Railton C. J., Schneider J. B. An analytical and numerical analysis of several locally conformal FDTD schemes. IEEE trans. Microwave Theory and Techn. 1999. Vol. 47. P. 56–66.
Dey S., Mittra R. A Conformal Finite-Difference Time-Domain Technique for Modeling Cylindrical Dielectric Resonators. IEEE Transactions on Microwave Theory and Techniques. 1999. Vol. 47, no. 9. P. 1737–1739.
Ismail M. S., Al-Basyoni K. S. A Logarithmic Finite Difference Method for Troesch’s Problem. Applied Mathematics. 2018. Vol. 9, no. 5. P. 550–559.
Taflove A., Hagness S. Computational electromagnetics: the finite difference time domain method. Boston – London: Artech House, 2000. 852 p.
Rezynkina М. М., Rezynkin О. L., Sosina O. V. Mathematical modeling of distribution of magnetic field in the vicinity of the magnetic rods. Tekhnichna Elektrodynamika. 2014. No. 6. P. 30–36.
Rezinkina M. M., Rezinkin O. L., Svetlichnay E. E. Electric field in the vicinity of long thin conducting rods. Technical Physics. 2015. Vol. 60, no. 9. P. 1277–1283.
Stratton J. A. Electromagnetic theory. NJ: IEEE Press, 2007. 614 p.
Clemens M., Weiland T. Discrete electromagnetism with the finite integration technique. Progress in Electromagnetics Research. 2001. Vol. 32. P. 65–87.
Clemens M., Weiland T. Regularization of eddy current formulations using discrete grad–div operators. IEEE Transactions on Magnetics. 2002. Vol. 38, no. 2. Р. 569–572.