DOI: https://doi.org/10.20998/2411-3441.2019.1.03

ПРОЕКТУВАННЯ РОБОЧОГО КОЛЕСА РАДІАЛЬНО-ОСЬОВОЇ НАСОС-ТУРБІНИ НА УМОВИ КАНІВСЬКОЇ ГАЕС

Andrey Rusanov, Oleg Khoryev, Valery Dedkov

Анотація


Представлено методику і результати вибору розрахункових параметрів проточної частини радіально-осьової насос-турбіни підвищеної швидкохідності на напір до 120 м на умови Канівської ГАЕС. За допомогою програмного комплексу «Колесо» спроектовано робоче колесо і визначено його попередні кінематичні і енергетичні показники в турбінному і насосному режимі. Профілювання поверхні лопаті робочого колеса проведено методом розв'язання диференціального рівняння лінії струму в плані. За допомогою програмного комплексу IPMFlow виконано чисельне дослідження просторової в'язкої течії рідини в проточній частині. Моделювання течії в'язкої нестисливої рідини в проточній частині насос-турбіни виконано на основі чисельного інтегрування рівнянь Рейнольдса з додатковим членом, що містить штучну стисливість. Для обліку турбулентних ефектів застосовується диференціальна двопараметричного модель турбулентності SST Ментера. Чисельне інтегрування рівнянь проводиться за допомогою неявної квазімонотонной схеми Годунова другого порядку точності за простором і часом. Дискретизація досліджуваної розрахункової області, що включає по одному каналу направляючого апарату і робочого колеса, виконана за допомогою структурованої сітки з шестикутними комірками. На основі аналізу структури потоку в проточній частині і гідравлічних втрат в ній проведено модифікацію робочого колеса за рахунок зменшення кута лопаті в плані та виконано чисельне дослідження течії в модернізованій проточній частині. Перерахунок теоретичної напірної характеристики моделі на натурні умови Канівської ГАЕС і залежність ККД від подачі в насосному режимі показують, що розроблена лопатева система робочого колеса забезпечує показники, що задовольняють вимогам технічного завдання на проектування насос-турбіни. В турбінному режимі поліпшення структури потоку на периферійній ділянці лопаті робочого колеса призвело до підвищення його енергетичних якостей: гідравлічні втрати в напрямовуючому апараті практично не змінилися, а втрати в робочому колесі при оптимальному режимі знизилися на 0,65 %.

Ключові слова


Насос-турбіна; робоче колесо; проточна частина; просторова течія; структура потоку; чисельне дослідження

Повний текст:

PDF

Посилання


Linnik A. V., Khaitov V. D. Sovremennyi uroven’ i osnovnyie napravleniya razvitiya gidroturbostroeniya v Ukraine [Modern level and main direction of development of hydroturbine construction in Ukraine]. Problemy Mashinostroyeniya. 2010, vol. 13, no. 1, pp. 11–18.

Potashnik S. I. Strategiya razvitiya gidroenergetiki Ukrainyi na period do 2030 g. Konzeptual’nyie polozheniya [Development strategy of Ukraine's hydropower for the period up to 2030. Conceptual provisions]. Energeticheskaya politika Ukrainyi [Energy Policy of Ukraine]. 2005, no. 7–8, pp. 62–64

Landau Yu. A. Osnovnye tendentsii razvitiya gidroenergetiki Ukrainy [The main trends in the development of hydropower in Ukraine]. Nauchnye raboty [Scientific works]. Kharkov, 2014, vol. 53, iss. 40, pp. 82–86.

Ryabenko O. A., Klyuha O. O., Tymoshchuk V. S. Rol’ GAES v roboti energosistem [The role of PSP in the operation of power systems]. Vymiryuval’na ta obchyslyuval’na tekhnika v tekhnologichnykh processakh [Measuring and computing engineering in technological processes]. Kiev, 2014, no. 2, pp. 167–170.

Agibalov E. S., Vapnik B. K., Veremeenko I. S. et al. Razrabotka i issledovanie modeley obratimoy gidromashiny dlya Dnestrovskoy GAES [Development and study of models of a reversible hydraulic machine for the Dniester PSPP]. Problemy Mashinostroyeniya. 1994, no. 40, pp. 8–12.

Dedkov V. N. Sozdanie nomenklaturnogo ryada obratimykh radialno-osevykh gidromashin [Creation of a nomenclature series of reversible Francis hydraulic machines]. Problemy Mashinostroyeniya. 2002, vol. 5, no. 1, pp. 16–19.

Dedkov V. N. Opredelenie raschetnykh parametrov obratimykh gidromashin dlya diapazona naporov H = 70–700 m [Determination of the design parameters of reversible hydraulic machines for the range of head H = 70–700 m]. Problemy Mashinostroyeniya. 2008, vol. 11, no. 1, pp. 7–11.

Drankovsiy V. E., Khavrenko M. Yu. Opredelenie raschetnykh parametrov vysokonapornykh obratimykh gidromashin [Determination of design parameters of high-pressure reversible hydraulic machines]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 81–84.

Barlit V. V., Mironov К. А., Vlasenko А. V., Yakovleva L. К. Raschet i proektirovanie protochnoy chasti reaktivnykh gidroturbin na osnove chislennogo modelirovaniya rabochego protsessa [Calculation and design of the flow part of jet turbines based on numerical simulation of the workflow]. Kharkov, NTU "KhPI" Publ., 2008. 215 p.

Sukhorebryy P. N. Raschet spiral'nykh kamer radial'no-osevykh obratimykh gidromashin [Calculation of spiral chambers radial-axial reversible hydraulic machines]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2001, issue 129, part 1.1, pp. 79–89.

Sukhorebryy P. N. Otsenka vliyaniya parametrovststora i napravlyayushchego apparata na energeticheskie kharakteristiki radial’no-osevykh obratimykh gidromashin [Evaluation of the influence of the parameters of the stator and guide vanes on the energy characteristics of radial-axial reversible hydraulic machines]. Problemy Mashinostroyeniya. 2003, vol. 5, no. 2, pp. 107–112.

Rusanov A. V., Khoryev O. N., Sukhorebryy P. N., Dedkov V. N. Razrabotka i raschetnoe issledovanie protochnoy chasti nasos-turbiny dlya usloviy Kanevskoy GAES [Development and design study of the flow part of the pump turbine for the conditions of the Kaniv PSPP]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2018, no. 17 (1293), pp. 4–8.

Nicolet С., Alligne S., Kawkabani B. Unstable operation of Francis Pump-Turbine at runaway: Rigid and elastic water column oscillation modes. Journal of Fluid Machinery and Systems. 2009, vol. 2, no. 4, pp. 324–333.

Olimstad G., Nielsen T., Borresen B. Dependency on runner geometry for reversible pump-turbine characteristic in turbine mode of operation. Journal Fluid Eng. 2012, no. 134, pp. 121–130.

Masami Harano, Kiyohito Tani, Nomoto Satoru. Practical application of high-performance Francis-turbine runner fitted with splitter blades at Ontake and Shikurobegawa No. 3 power station of the Kansai electric power Co., inc. Hitachi Review. 2006, vol. 55, no. 3, pp. 109–113.

Rezvaya K., Krupa E., Drankovskiy V., Potetenko O., Tynyanova I. The numerical reseach of the flow in the inlet of the high-head hydraulic turbine. Bulletin of the National Technical University "KhPI". Series: New solution in modern technologies. Kharkiv, NTU "KhPI" Publ., 2017, no. 7 (1229), pp. 97–102. doi: 10.20998/2413-4295.2017.07.13

Ryezva K. S., Drankovs'kyy V. E., Tyn'yanova I. I. Doslidzhennya potoku u vysoko-napornykh oborotnykh gidromashinakh [The research in the high-pressure reversible hydraulic machine]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2017, no. 42 (1264), pp. 82–86.

Kochevskiy А. N., Nenya V. G. Sovremenny podkhod k modelirovaniyu i raschetu techenij zhidkosti v lopastnykh gidromashinakh [Modern approach to modeling and calculating fluid flow in blade hydraulic machines]. Visnyk Sums'koho derzhavnoho universytetu. Seriya: Теkhnichni nauky [Sumy State University Bulletin: Technical Sciences Series]. Sumy, SumDU Publ., 2003, no. 13 (59), pp. 195–210.

Menter F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 1994, no. 8, pp. 1598−1605.

Menter F. R., Esch T. Advanced Turbulence Modelling in CFX. CFX Update. 2001, no. 20, pp. 4–5.


Пристатейна бібліографія ГОСТ






website: http://gm.khpi.edu.ua/