ДОСЛІДЖЕННЯ ТЕЧІЇ РІДИНИ В ЗОНІ «СПІРАЛЬ – СТАТОР» ГІДРОТУРБІНИ РО 310 З ПЛОСКИМИ КІЛЬЦЯМИ СТАТОРА

Основний зміст сторінки статті

Nataliya Shevchenko
Oleksandr Grishin
Olena Koval

Анотація

Розглядається один з відповідальних вузлів гідроагрегату – вузол «спіральна камера – статор». Статор гідротурбіни є подводящим елементом проточного тракту гідротурбіни, який бере участь у формуванні потоку перед робочим колесом. В роботі розглянута конструкція статора з плоскими кільцями, колони яких всунути в спіральну камеру. Така конструкція статора дозволяє зберегти основні габаритні розміри спіралі в плані для гідротурбін з вбудованим кільцевим затвором. Інформаційний аналіз показав, що поряд з конструктивними і технологічними перевагами, застосування статора, колони якого всунути в спіральну камеру, мають гідродинамічні недоліки. При даній конструкції вузла «спіраль – статор», деформується епюра меридіональної складової швидкості. В результаті можуть збільшитися втрати енергії, пов'язані з відривом потоку і вторинними течіями в спіральній камері. Представлені гідродинамічні дослідження структури потоку в зоні спіраль –статор з плоскими кільцями – експериментальні та чисельні розрахунки. Пропонується для дослідження форми кілець статора провести розрахунок осесимметричного течії в обмеженою розрахункової зоні «спіраль – статор» гідротурбіни з використанням двошарової моделі руху в'язкої рідини. Наведено експериментальні дані виміру тиску на поверхні кілець статора. Зіставлення розрахункових і експериментальних даних дає якісне збіг. Для трьох варіантів кілець статора в роботі проведено розрахунок прикордонного шару. Результати показали, що максимальне захаращення прикордонного шару каналу статора досягає 5,2 %. Для досліджуваних варіантів кілець місцевого відриву прикордонного шару не спостерігається. Проведено розрахунок обтікання решітки профілів колон статора на осьосиметричній поверхні струму з подальшим визначенням профільних і ударних втрат.

Блок інформації про статтю

Розділ
Статті
Біографії авторів

Nataliya Shevchenko, Національний технічний університет «Харківський політехнічний інститут»

кандидат технічних наук, доцент,  доцент кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Oleksandr Grishin, Національний технічний університет «Харківський політехнічний інститут»

старший викладач кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Olena Koval, Національний технічний університет «Харківський політехнічний інститут»

аспірант кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Посилання

Linnik A. V., Haitov V. D. Sovremennyy uroven' i osnovnye napravleniya razvitiya gidroturbostroeniya v Ukraine [The current level and main directions of development of hydroturbation in Ukraine]. Problemy Mashinostroyeniya. 2010, vol. 44, no. 8, pp. 11–18.

Hermod Brekke. Hydraulic Tutrbines Design, Erection and Operation. Endringsdato, Norway Publ., 2000. 317 р.

Mirea. Federal'nyy katalog. [Mirea. Federal directory]. MGU Publ., 2007. 35 p.

Challenges in the Design of Pump Turbines. AndritzHydro CO. USA, November 2012. 24 p.

Veremeenko I. S., Kantor B. Ya., Medkovskaya T. F., Rzhevskaya I. E., Andryuschenko S. A. Issledovanie napryazhenno-deformirovannogo sostoyaniya i optimizatsiya elementov konstruktsii protochnogo trakta gidroturbin [Investigation of the path of hydraulic turbines]. Aviatsionno-kosmicheskaya tehnika i tehnologiya. 2006, vol. 8, no. 34, pp. 104–108.

Xuanlin Peng, Jianzhong Zhou, Chu Zhang, Ruhai Li, Yanhe Xu, Diyi Chen. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine. Energies. 2017, no. 10, pp. 1–17. doi: 10.3390/en10111901.

Fedulov Yu. I., Suhorebryiy P. N., Agibalov E. S. Issledovanie protochnoy chasti obratimoy gidromashiny s ploskimi kol'tsami statora i ustanovkoy kol'tsevogo zatvorov [The study of the flow part of a reversible hydraulic machine with flat rings of the stator and the installation of an annular gate]. Vestnik Khar'kovskogo politekhnicheskogo instituta: sb. nauch. tr. [Bulletin of the Kharkov Polytechnic Institute: a collection of scientific papers]. Kharkov, Vyshha shkola Publ., 1988, issue 22: Gidravlicheskie mashiny [Hydraulic machines], pp. 17–20.

Issledovanie elementov protochnyih chastey Rogunskoy GES, Dnestrovskoy GAES i dr. GES i AES. Otchet o NIR [Investigation of the elements of flow-through parts of the Rogun HPS, Dniester PSP and other HPS i NPP]. Kharkov, NTU "KhPI" Publ., 2000. 120 p.

Chernyiy S. G., Avdyushenko A. Yu., Chirkov D. V. Chislennaya model' techeniya v gidroturbine s zatvorom [Numerical model of flow in a water turbine with a shutter]. Vestnik Vostochno-Kazahstanskogo gos. tehn. un-ta im. D. Serikbaeva: sb. nauch. tr. Temat. vyp.: Vychislitel'nye tekhnologii [Bulletin of the East Kazakhstan State Technical University D. Serikbaeva: a collection of scientific papers. Thematic issue: Computational Technologies]. Ust-Kamenogorsk Publ., 2013, pp. 266–274.

Topazh G. I. Lopastnye gidromashiny i gidrodinamicheskie peredachi. Osnovy rabochego protsessa gidroturbin [Vane hydraulic machines and hydrodynamic transmission. Basics of the workflow hydroturbines]. Sankt-Peterburg, Politehn. Universitet. Publ., 2011. 154 p.

Pugachev P. V., Aleksenskiy V. A., Zharkovskiy A. A. Raschetnoe issledovanie poter' v napravlyayushchikh apparatakh kanal'nogo i reshetochnogo tipov [Estimated study of losses in the guide vanes channel and lattice types]. Nasosy & oborudovanie. 2011, no. 1, pp. 44–66.

Blazek Jiri. Computational Fluid Dynamics: Principles and Applications. Waltham, Helselvier Publ., 2015. 440 p.

Jaymin Desai, Amit Roghelia, Vishal A Soni. Validation of Hydraulic Design of Spiral Casing and Stay Vanes of Francis Turbine Using CFD. Conference Paper (16–18 December 2010, Chennai, India).

Susan-Resiga R. F., Muntean S., Avellan F., Anton I. Mathematical modelling of swirling flow in hydraulic turbines for the full operating range. Applied Mathematical Modelling. 2011, no. 35, pp. 4759–4773.

Ganesh Chembedu, Alleiah Sunkara, Mayank Srivastava. Automizing the Design of Francis Turbine Spiral Case. International Journal of Advanced Mechanical Engineering. Vol. 4, no. 5 (2014), pp. 463–472.

Sukhorebryy P. N., Men'shikova L. L., Barlit V. V., Drankovskiy V. E., Eskribano E. M. Optimizatsiya podvoda radial'no-osevykh vysokonapornykh gidroturbin na osnove chislennogo issledovaniya kinematicheskikh kharakteristik i poter' energii [Optimization of the supply of radial-axial high-pressure hydraulic turbines based on a numerical study of the kinematic characteristics and energy loss]. Problemy mashinostroeniya. 2003, vol. 2, pp. 590–594.

Drankovsky V. E., Rezvaya K. S., Krupa E. S. Calculating three-dimensional fluid flow in the spiral casing of the reversible hydraulic machine in turbine mode. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv: NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 53–57.

Potetenko O. V., Shevchenko N. G., Radchenko L. R. Vliyanie zakonomernostey struktury potoka v protochnoy chasti vysokonapornoy RO gidroturbiny na osobennosti matematicheskogo modelirovaniya [The influence of regularities of the flow structure in the flow part of the high-pressure RO of the hydroturbine on the features of mathematical modeling]. Vestnik Nats. tekhn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Energeticheskie i teplotekhnicheskie protsessy i oborudovanie [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: Energy and heat engineering processes and equipment]. Kharkov, NTU "KhPI" Publ., 2003, no. 10, pp. 130–143.

Potetenko O. V., Drankovskiy V. E., Krupa E. S. Vihrevaya struktura potoka i analiz razlichnyih matematicheskih modeley potoka v kanalah vyisokonapornyih radialno-osevyih gidroturbin RO 400, RO 500 i RO 600 [Vortex flow structure and analysis of various mathematical flow models in high-pressure channels of radial-axial hydraulic turbines RO 400, PO 500 and PO 600]. Skhidno-Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2012, vol. 318, no. 57, pp. 50–57.

Zharkovskiy A. A., Shchutskiy S. Yu. Raschet prostranstvennogo pogranichnogo sloya v rabochem kolese tsentrobezhnoy turbomashiny [The calculation of the spatial boundary layer in the impeller of the centrifugal turbomachine]. Nauchno-tekhnicheskie vedomosti SPbGPU. Seriya: Nauka i obrazovanie. 2010, vol. 1, no. 95, pp. 143–150.

Vakhrusheva O. S., Kovalev S. M., Shevchenko N. H. Vyznachennya hidravlichnykh vtrat u soplovomu aparati radial'no-os'ovoyi hidroturbiny na napory ponad 600 m [Determination of hydraulic losses in a nozzle apparatus of a radial-axial hydro turbine at a pressure of more than 600 m]. Vestnik Nats. tekhn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Novitni rishennya v suchasniy tehnitsi [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: Newest solutions in modern technology]. Kharkiv, NTU "KhPI" Publ., 2003, no. 10, pp. 64–70.