МОДЕЛЮВАННЯ ГІДРОДИНАМІЧНИХ ХАРАКТЕРИСТИК ОБОРОТНОЇ ГІДРОМАШИНИ

Основний зміст сторінки статті

Irina Tynyanova
Viktor Drankovskiy
Kseniya Rezvaya
Оleksandr Kosorukov

Анотація

Вимоги сучасних потужних енергосистем до вирівнювання графіку навантаження обумовлюють будівництво гідроакумулюючих електростанцій, як найбільш ефективних для роботи в пікових зонах навантаження. Успішне рішення задачі створення високоефективного устаткування для ГАЕС багато в чому залежить від правильного вибору геометрії елементів проточної частини оборотної машини які забезпечують необхідний рівень її енергетичних показників. В роботі розглянуті питання моделювання гідродинамічних характеристик лопатевих систем оборотної гідромашини, що базується на спільному використанні моделі осередненого потоку та спрощеної моделі просторового потоку в безлопатевих ділянках проточної частини. Наведено вирази, що встановлюють зв'язок гідродинамічних характеристик з безрозмірними комплексами, та виражають загальні закономірності взаємодії потоку з робочим колесом оборотної гідромашини, показано справедливість рівнянь теоретичних характеристик оборотної гідромашини в досить широкому діапазоні робочих режимів. Розглядається вплив гідродинамічних характеристик лопатевих систем на формування енергетичних характеристик оборотної гідромашини. Аналіз гідродинамічних характеристик окремих елементів проточної частини дозволяє проаналізувати їхній вплив на енергетичні характеристики, результати такого аналізу є основою для вирішення великого кола питань, що виникають при проектуванні оборотної гідромашини. В даній роботі були проведені чисельні дослідження оборотної гідравлічної машині ОРО500. Характер залежностей наведених у статті підтверджує доцільність використання безрозмірних комплексів для розрахунку та аналізу енергетичних залежностей оборотної гідромашини. Розрахункові дані свідчать про визначальний вплив гідродинамічних параметрів просторової решітки як на параметри оптимального режиму, так і на характер залежності ККД і потужності при відході від нього. Вибір найбільш ефективного методу залежить від стадії проектування проточної частини та від поставленої задачі. Уточнити проведені розрахунки методом осереднених параметрів можливо завдяки сучасним програмам для чисельного дослідження просторової течії.

Блок інформації про статтю

Розділ
Статті
Біографії авторів

Irina Tynyanova, Національний технічний університет «Харківський політехнічний інститут»

кандидат технічних наук, доцент кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Viktor Drankovskiy, Національний технічний університет «Харківський політехнічний інститут»

кандидат технічних наук, доцент, професор кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Kseniya Rezvaya, Національний технічний університет «Харківський політехнічний інститут»

кандидат технічних наук, доцент кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Оleksandr Kosorukov, Національний технічний університет «Харківський політехнічний інститут»

аспірант кафедри «Гідравлічні машини ім. Г. Ф. Проскури»

Посилання

Landau Yu. A. Osnovnye tendentsii razvitiya gidroenergetiki Ukrainy [The main trends in the development of hydropower in Ukraine]. Nauchnye raboty. Kharkov. 2014, vol. 53, issue 40, pp. 82–86.

Ryabenko O. A., Klyukha O. O., Tymoshchuk V. S. Rol' HAES v roboti enerhosystem [The role of PSP in the operation of power systems]. Vymiryuval'na ta obchyslyuval'na tekhnika v tekhnolohichnykh protsesakh. Kyiv. 2014, no. 2, pp. 167–170.

Kucheryava I. M., Sorokina N. L. Shlyakhy rehulyuvannya hrafikiv navantazhennya ta upravlinnya spozhyvannyam elektrychnoyi enerhiyi [Ways of adjusting load schedules and controlling the consumption of electric energy]. Hidroenerhetyka Ukrayiny. 2007, no. 4, pp. 36–44.

Sinyugin V. Yu., Magruk V. I., Rodionov V. G. Gidroakkumuliruyushchie elektrostantsii v sovremennoy elektroenergetike [Pumped-storage power plants in modern power industry]. Moscow, ENAS Publ., 2008. 352 p.

Tikhomirova N. V. GAES na razvivayushchemsya energorynke: innovatsii i investitsii [PSP in the emerging energy market: innovation and investment]. Gidrotekhnicheskoe stroitel'stvo. 2005, no 6, pp. 30–37.

Kolychev V. A., Drankovskiy V. E., Marakhovskiy M. B. Raschet gidrodinamicheskikh kharakteristik napravlyayushchikh apparatov gidroturbiny [Calculation of the hydrodynamic characteristics of the wicket gate of the hydraulic turbine]. Kharkov, NTU "KhPI" Publ., 2002. 216 p.

Kolychev V. A., Mironov K. A., Tyn'yanova I. I. Raschet i analiz balansa poter' energii v vysokonapornoy radial'no-osevoy gidravlicheskoy turbine [Calculation and analysis of the energy loss balance in a high-head Francis hydroturbine.]. Skhidno-Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2005, no. 1/2 (13), pp. 95–106.

Kolychev V. A., Mironov K. A., Tyn'yanova I. I. Obshchie zakonomernosti rabochego protsessa i ikh primenenie dlya rascheta i analiza energeticheskikh kharakteristik gidroturbin [General regularities of the working process and their application for the calculation and analysis of the energy characteristics of hydroturbines]. Skhidno-Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2006, no. 4/3 (22), pp. 54–64.

Drankovskiy V. E., Rezvaya K. S. K raschetu gidrodinamicheskikh kharakteristik vysokonapornoy obratimoy gidromashiny v turbinnom rezhime raboty na osnove matematicheskogo opisaniya ee rabochego protsessa [To the calculation of the hydrodynamic characteristics of a high-head reversible hydraulic machine in a turbine mode of operation based on a mathematical description of its operation]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2015, no. 3, pp. 125–129.

Rezvaya K., Krupa Е., Drankovskiy V., Potetenko O., Tynyanova I. The numerical reseach of the flow in the inlet of the high-head hydraulic turbine. Bulletin of the National Technical University "KhPI". Series: New solution in modern technologies. Kharkiv, NTU "KhPI" Publ., 2017, no. 7 (1229), pp. 97–102. doi: 10.20998/2413-4295.2017.07.13

Drankovsiy V. E., Khavrenko M. Yu. Opredelenie raschetnykh parametrov vysokonapornykh obratimykh gidromashin [Determination of design parameters of high-pressure reversible hydraulic machines]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 81–84.

Drankovskiy V. E., Rezvaya K. S., Krupa Е. S. Сalculating three-dimensional fluid flow in the spiral casing of the reversible hydraulic machine in turbine mode. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 53–57.

Dedkov V. N. Opredelenie raschetnykh parametrov obratimykh gidromashin dlya diapazona naporov N = 70–700 m [Determination of the design parameters of reversible hydraulic machines for the range of head H = 70–700 m]. Problemy mashinostroeniya. 2008, vol. 11, no. 1, pp. 7–11.

Seleznev V. N. Raschetnoe opredelenie energeticheskikh kharakteristik radial'no-osevoy nasos-turbiny na osnove trekhmernogo modelirovaniya techeniya zhidkosti [Calculated determination of the energy characteristics of a radial-axial pump turbine based on three-dimensional modeling of fluid flow]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2013, vol. 15, no. 4–2, pp. 583–587.

Nilsson H., Servantes M. Effect of inlet boundary conditions, on the computed flow in the Turbine–99 draft tube, using OpenFOAM and CFX. 26th IAHR Symposium on Hydraulic Machinery and Systems (19–23 August 2012, China, Beijing). Beijing, 2012.

Duan X. H., Kong F. Y., Liu Y. Y., Zhao R. J., Hu Q. L. The numerical simulation based on CFD of hydraulic turbine pump. IOP Conference Series: Materials Science and Engineering. Vol. 129. 2016.

Elin A., Lugova C., Kolesnik E. Testing of the CFX-5 package on the examples of flow of liquid and gas in the running parts of VNIIAEN specialization pumps: flow modeling in the flow part of the intermediate stage of the multistage centrifugal pump. Scientific and practical journal "Pumps and equipment". 2007, vol. 6 (47), pp. 42–46.

Rusanov A., Rusanov R., Lampart P., Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Engineering. 2015, vol. 5, pp. 399–410.

Starodubtsev Y. V., Gogolev I. G., Solodov V. G. Numerical 3D model of viscous turbulent flow in one stage gas turbine and its experimental validation. Journal of Thermal Science. 2005, vol. 14, pp. 136–141.

Bychkov I. M. Verification of the OpenFOAM application package on aerodynamic profile flow problems. XIX school-seminar "Aerodynamics of Aircraft". 2008.

Stefan D., Rudolf P. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model. Journal of Physics: Conference Series. 2015, vol. 579.