ФУНКЦІОНАЛЬНА СТРУКТУРА СИСТЕМИ ГІДРОПРИВОДУ ПРИ МОДЕЛЮВАННІ ЙОГО ЕКСПЛУАТАЦІЙНИХ РЕЖИМІВ
Основний зміст сторінки статті
Анотація
Блок інформації про статтю
Посилання
Cherkashenko M. V., ed. Bulletin of the National Technical
University "KhPI". Series: Hydraulic machines and hydraulic units.
Kharkiv, NTU "KhPI" Publ., 2018, no. 46 (1322), 83 p.
Cherkashenko M. Synthesis of discrete drives control systems
hydraulic machines and hydrounits. Bulletin of the National
Technical University "KhPI". Series: Hydraulic machines and
hydraulic units. Kharkiv, NTU "KhPI" Publ., 2018, no. 46 (1322),
pp. 4–9.
Cherkashenko M., Krutikov G. Influence of time delay in the control
system on positioning process of pneumounit working body.
Eastern-European Journal of Enterprise Technologies. 2010, no. 1,
pp. 11–15.
Sokol Ye., Cherkashenko M. Synthesis of control schemes for
hydroficated automation objects. GmbH & Co, 2018. 214 p.
Guana L., Chen G. Pumping Systems: Design and Energy
Efficiency. Encyclopedia of Energy Engineering and Technology.
Karvonena M., Heikkiläa M., Huovaa M., Linjamaa M. Analysis by
Simulation of Different Control Algorithms of A Digital Hydraulic
Two-Actuator System. International Journal of Fluid Power. 2014,
vol. 15, no. 1, pp. 33–44.
Kozlov L., Bogachuk V., Bilichenko V., Tovkach А. Determining of
the optimal parameters for a mechatronic hydraulic drive.
Proceedings SPIE. Photonics Applications in Astronomy,
Communications, Industry and High-Energy Physics Experiments.
doi: 10.1117/12.2501528
Polishchuk L., Kozlov L., Piontkevych O. Study of the dynamic
stability of the conveyor belt adaptive drive. Proceedings SPIE.
Photonics Applications in Astronomy, Communications, Industry
and High-Energy Physics Experiments. 2018.
doi: 10.1117/12.2501535
Gubarev A. P., Kozinets D. A., Levchenko O. V. MAS-1.0 –
Uproshchennoe modelirovanie mnogoprivodnykh
gidropnevmaticheskikh sistem tsiklicheskogo deystviya [MAS-1.0 –
Simplified Modeling of Multi-Drive Hydropneumatic Cyclic Action
Systems]. Promyslova hidravlika i pnevmatyka. 2005, no. 4 (10),
pp. 72–77.
Gubarev A. P., Kozinets D. A., Levchenko O. V. Proverka logiki
funktsionirovaniya tsiklovykh sistem gidravlicheskikh i
pnevmaticheskikh privodov [Check the logic of the functioning of
cyclic systems of hydraulic and pneumatic drives]. Promyslova
hidravlika i pnevmatyka. 2004, no. 3, pp. 64–69.
Parr A. Hydraulics and Pneumatics: A Technician's and Engineer's
Guide. Butterworth-Heinemann Ltd, 2011. 248 p.
Hooper J. Basic Pneumatics: An Introduction to Industrial
Compressed Air Systems and Components. 2015. 110 p.
Brian E. Compressed Air Operations Manual. McGraw-Hill
Education Publ., 2006. 407 p.
Krivts I., Krejnin V. Pneumatic Actuating Systems for Automatic
Equipment: Structure and Design. 2006. 368 p.
Wu P., Lai Z., Wu D., Wang L. Optimization Research of Parallel
Pump System for Improving Energy Efficiency. Journal of Water
Resources Planning and Management. 2014.
doi: 10.1061/(ASCE)WR.1943-5452.0000493
Miller R., Liberi T., Scioscia J. Analyzing Pump Energy through
Hydraulic Modeling. Pipelines. 2015, pp. 869–877.
Peña O., Leamy M. An efficient architecture for energy recovery in
hydraulic elevators. International Journal of Fluid Power. 2015,
vol. 16, no. 2, pp. 83–98.
Subramanya K. Fluid Mechanics and Hydraulic Machines:
Problems and Solutions. 2010. 617 p.
Bin Zhang, Jien Ma. Analysis of the flow dynamics characteristics
of an axial piston pumpbased on the computational fluid dynamics
method. Engineering Applications of Computational Fluid
Mechanics. 2017, vol. 11, no. 1, pp. 86–95.
Festo.com [Festo Didactic SE Rechbergstr.3, DE-73770
Denkendorf]. Available at: http://www.festo-didactic.com/int-en/
(accessed 01.04.2016).