ДОСЛІДЖЕННЯ ПОТОКУ РІДИНИ В ДВОВИМІРНІЙ І ТРИВИМІРНІЙ ПОСТАНОВЦІ В ПРОТОЧНІЙ ЧАСТИНІ ВИСОКОНАПІРНОЇ РАДІАЛЬНО-ОСЬОВОЇ ГІДРОТУРБІНИ

Основний зміст сторінки статті

Konstantin Mironov
Yuliia Oleksenko

Анотація

В роботі представлені деякі результати розрахункового дослідження просторової турбулентної течії в'язкої рідини в проточній частині високонапірної радіально-осьової гідротурбіни РО500. Для поліпшення енергетичних показників на попередньому етапі проектування гідротурбіни проводиться чисельне моделювання потоку. Складність вирішення поставленого завдання обумовлена як складної просторової геометрією лопатевої системи робочого колеса, так і різним ступенем впливу робочих органів на формування енергетичних характеристик. Даний підхід CFD знижує витрати і час в порівнянні з експериментальними підходом і дає можливість удосконалити і аналізувати показники турбіни і її конструкцію до моменту виготовлення моделі. Розрахунковий комплекс програм надає можливість побачити картину розподілу тиску, поле векторів швидкості і руху частинок рідини для обґрунтування та аналізу результатів. Чисельне моделювання просторового потоку в проточній частині гідротурбіни було проведено для визначення зміни енергетичних характеристик, тому була обрана k - ε модель турбулентності, дана модель є найбільш вдалою моделлю турбулентності першого рівня замикання. Наведені результати розрахункового дослідження підтверджують, що гідравлічний коефіцієнт корисної дії гідравлічної турбіни в значній мірі залежить від втрат в напрямному апараті і робочому колесі і означає саме цим елементам варто приділяти найбільші увагу, їх конструкції та узгодженню потоку в них. Аналіз втрат енергії в проточній частині радіально-осьової гідротурбіни був проведений з використанням програм для розрахунку течії рідини в двовимірній і тривимірній постановці. Отримані розрахункові дані відповідають відомим раніше експериментальним рекомендаціям для високонапірної радіально-осьової гідротурбіни. Були розглянуті питання підвищення енергетичних показників спроектованої високонапірної радіально-осьової гідротурбіни.

Блок інформації про статтю

Розділ
Статті
Біографії авторів

Konstantin Mironov, Національний технічний університет «Харківський політехнічний інститут»

кандидат технічних наук, доцент

Yuliia Oleksenko, Національний технічний університет «Харківський політехнічний інститут»

аспірант

Посилання

Kolychev V. A. Kinematicheskie kharakteristiki potoka v lopastnykh gidromashinakh [Kinematic characteristics of flow in blade hydraulic machines]. Kiev, ISIO Publ., 1995. 272 p.

Kolychev V. A., Tyn'janova I. I., Mironov K. A. Modelirovanie energeticheskikh kharakteristik gidroturbin na nachal'nom etape proektirovaniya [Modeling the energy characteristics of hydroturbines at the initial design stage]. Vostochno-evropeyskiy zhurnal peredovykh tekhnologiy. 2010, vol. 43, no. 1/6, pp. 27–38.

Chernyj S. G., Chirkov D. V., Lapin V .N. Chislennoe modelirovanie techeniy v turbomashinakh [Numerical simulation of currents in turbomachines]. Novosibirsk, Nauka Publ., 2006. 202 p.

Chung T. J. Computational fluid dynamics. Cambridge: Cambridge university press Publ., 2002. 1012 p.

Minkowycz W. J. Sparrow E. M., Murthy J. Y. Handbook of Numerical Heat Transfer. Wiley, 2006. 984 p.

Paul G. Tucker. Computation of Unsteady Internal Flows – Fundamental Methods with Case Studies. New York, Springer US Publ., 2001. 376 p.

Myronov K. A., Oleksenko Yu. Yu. Primenenie CFD pri proektirovanii elementov protochnoy chasti gidroturbin [The use of CFD in the design of elements of the flow part of hydraulic turbines]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 116–121.

Barlit V. V., Mironov K. A., Vlasenko A. V., Jakovleva L. K. Raschet i proektirovanie protochnoy chasti reaktivnykh gidroturbin na osnove chislennogo modelirovaniya rabochego protsessa [Calculation and design of the flow parts of jet turbines based on numerical simulation of the workflow]. Kharkov, NTU "KhPI" Publ., 2008. 216 p.

Lapin V. N., Chernyj S. G., Skorospelov V. A., Turuk P. A. Problemy modelirovaniya techeniy v turbomashinakh [Current modeling problems in turbomachines]. Vestnik Kazakhskogo Nats. un-ta im. al'-Farabi. Seriya: Matematika, mekhanika, informatika [Bulletin of Al-Farabi Kazakh National University. Series: Mathematics, mechanics, computer science]. Almaty, KazNU Publ., 2004, vol. 42, issue 3, pp. 57–66.

Suhorebryj P. N, Barlit V. V., Drankovskij V. Je., Rao V. S., Harvani L. K. Kharakteristiki prostranstvennogo turbulentnogo potoka i poteri energii v elementakh protochnoy chasti gidroturbiny RO500 [Characteristics of spatial turbulent flow and energy loss in the elements of the flow part of the PO500 hydro turbine]. Problemy mashinostroeniya. 2004, vol. 7, no. 3, pp. 13–20.

ANSYS. Ansys 16.0 Release Documentation, Theory and Modelling Guide. ANSYS Inc.: Canonsburg, PA, USA, 2015.

Jošt D., Škerlavaj A., Morgut M., Mežnar P., Nobile E. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube. Journal of Physics: Conference Series. 2015. Vol. 579.

Kolychev V. A., Mironov K. A., Tyn'janova I. I. Raschet i analiz balansa poter' energii v vysokonapornoy radial'no-osevoy gidravlicheskoy turbine [Calculation and analysis of the energy loss balance in a high-pressure radial-axial hydraulic turbine]. Skhidno-Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2005, vol. 13, no. 1/2, pp. 95–106.

Kolychev V. A., Drankovskij V. Je. Raschet gidrodinamicheskikh kharakteristik napravlyayushchikh apparatov gidroturbiny [Calculation of the hydrodynamic characteristics of the guide vanes of a turbine]. Kharkov, NTU "KhPI" Publ., 2002. 268 p.

Daneshkah K., Zangeneh M. Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method. 25-th IAHR Symposium on Hydraulic Machinery Systems. Vol. 12. 2010.

Zhang H., Zhang L. Numerical simulation of cavitating turbulent flow in a high head Francis turbine at part load operation with OpenFOAM. Procedia Engineering. 2012, vol. 31. pp. 156–165.

Jun A. A., Krylov B. A. Raschet i modelirovanie turbulentnykh techeniy s teploobmenom, smesheniem, khimicheskimi reaktsiyami i dvukhfaznykh techeniy v programmnom komplekse Fastest-3D [Calculation and modeling of turbulent flows with heat exchange, mixing, chemical reactions and two-phase flows in the Fastest-3D software package]. Moscow, MAI Publ., 2007. 116 p.

Ayli E., Kaplan A., Cetinturk H. CFD analysis of 3D flow for 1.4 MW Francis turbine and model turbine manufacturing. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 1A. (2–5 August 2015, Boston, Massachusetts, USA). Boston, ASME Copyright, 2015.

Kurosawa S., Lim S. M., Enomoto Y. Virtual model test for a Francis turbine. IOP Conference Series: Earth and Environmental Science. 2010, vol. 12, no. 1.

Ayli E., Celebioglu K., Aradag S. Determination and generalization of the effects of design parameters on Francis turbine runner performance. Engineering Applications of Computational Fluid Mechanics. 2016, vol. 10:1, pp. 545–564.