ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ РОБОЧОГО ПРОЦЕСУ В ПРОТОЧНІЙ ЧАСТИНІ РАДІАЛЬНО-ОСЬОВОЇ ГІДРОТУРБІНИ РО45

Основний зміст сторінки статті

Анотація

Представлено результати розрахунку потоку в'язкої нестисливої рідини в проточній частині натурної низьконапірної радіально-осьової гідротурбіни РО45, що була розроблена фірмою ВАТ «Харківтурбоінжиніринг» і впроваджується компанією Go Goal (Індія) для проекту модернізації ГЕС Дхаліпур (Індія). Модель проточної частини, що запропонована «Харківтурбоінжиніринг», була випробувана на гідродинамічному стенді. Її геометричні параметри незначно відрізняються від турбін ГЕС Дхаліпур. Була поставлена і вирішена задача шляхом повної заміни експериментальних досліджень на розрахункові визначити гідродинамічні параметри турбіни в широкому діапазоні експлуатаційних режимів, підтвердити її високі показники і їх відповідність тендерним вимогам. Моделювання течії в'язкої нестисливої рідини в проточній частині гідротурбіни РО45 виконано за допомогою програмного комплексу IPMFlow на основі чисельного інтегрування рівнянь Рейнольдса з додатковим членом, що містить штучну стисливість. Для врахування турбулентних ефектів застосовується диференціальна двопараметрична модель турбулентності SST Ментера. Чисельне інтегрування рівнянь проводиться за допомогою неявної квазімонотонної схеми Годунова другого порядку точності за простором і часом. Дискретизація досліджуваної розрахункової області виконана за допомогою структурованої (канали направляючого апарату і робочого колеса) і неструктурованою (спіральна камера з колонами статора і відсмоктувальна труба) сітки з шестигранними комірками. В результаті численних досліджень були отримані такі результати: визначено структуру потоку у всіх елементах проточної частини і визначено значення ККД турбіни для експлуатаційних режимів, що відповідають 60; 70; 80; 90; 100 % від номінальної потужності при розрахунковому і максимальному напорах на станції; визначено параметри оптимальних за ККД режимів для цих напорів. Аналіз результатів численних досліджень підтвердив високі енергетичні характеристики гідротурбіни і їх відповідність вимогам замовника. Підтверджено, що деяка відмінність геометричних параметрів підводу несуттєво вплинула на показники проточної частини.

Блок інформації про статтю

Розділ
Статті

Посилання

Rusanov A. V., Hnesin V. I., Khoryev O. M., Zhandkovski R., Kolodyazhna L. V., Kos'yanova A. I., Kos'yanov D. Yu., Pashchenko N. V., Rusanov R. A., Sukhorebryy P. M., Chuhay M. O. Naukovo-tekhnichni osnovy modelyuvannya i proektuvannya protochnykh chastyn enerhetychnykh turboustanovok [Scientific and technical bases of modeling and design of flowing parts of power turbines]. Kharkiv, Instytut problem mashynobuduvannya im. A. M. Pidhornoho Publ., 2019. 384 p.

Barlit V. V., Mironov К. А., Vlasenko А. V., Yakovleva L. К. Raschet i proektirovanie protochnoy chasti reaktivnykh gidroturbin na osnove chislennogo modelirovaniya rabochego protsessa [Calculation and design of the flow part of jet turbines based on numerical simulation of the workflow]. Kharkov, NTU "KhPI" Publ., 2008. 215 p.

Mironov K. A., Olekseenko Yu. Yu. Primenenie CFD priproektirovanii elementov protochnoy chasti gidroturbiny [The use of CFD in the design of elements of the flow part of a hydraulic turbine]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 116–121.

Ryezva K. S., Drankovs'kyy V. E., Tyn'yanova I. I. Doslidzhennya potoku u vysoko-napornykh oborotnykh gidromashinakh [The research in the high-pressure reversible hydraulic machine]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2017, no. 42 (1264), pp. 82–86.

Kochevskiy А. N., Nenya V. G. Sovremenny podkhod k modelirovaniyu i raschetu techenij zhidkosti v lopastnykh gidromashinakh [Modern approach to modeling and calculating fluid flow in blade hydraulic machines]. Visnyk Sums'koho derzhavnoho universytetu. Seriya: Теkhnichni nauky [Sumy State University Bulletin: Technical Sciences Series]. Sumy, SumDU Publ., 2003, no. 13 (59), pp. 195–210.

Chernyy S. G., Chirkov D. V., Lapin V. N., Skorospelov V. A., Sharov S. V. Chislennoe modelirovanie techeniy v turbomashinakh [Numerical simulation of flows in turbomachines]. Novosibirsk, Nauka Publ., 2006. 202 p.

Pylev I. M., Malyshev A. K., Chernyy S. G. Optimizatsionnoe proektirovanie protochnykh chastey gidroturbin [Optimization design of flowing parts of hydroturbines]. Tyazheloe mashinostroenie. 2007, no. 4, pp. 10–13.

Astrakova A. S., Bannikov D. V., Chernyy S. G., Chirkov D. V. Chislennye metody optimizatsionnogo proektirovaniya protochnykh chastey gidroturbin [Numerical methods for optimizing the design of flowing parts of hydraulic turbines]. Vychislitel'nye tekhnologii. 2014, vol. 19, no. 1, pp. 20–39.

Zolotarevich V. P., Yugov N. V. Raschet gidrodinamicheskikhkharakteristik rabochego kolesaradial'no-osevoy gidroturbiny RO 230 [Calculation of the hydrodynamic characteristics of the runner of Francis turbine RO 230]. Nauchno-tekhnicheskiy vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologiy, mekhaniki i optiki. 2009, no. 4 (62), pp. 60–67.

Brekke H. Design, Performance and Maintenance of Francis Turbines. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering. 2013, vol. 13 (5), pp. 28–40.

Wu J., Shimmei K., Tani K., Niikura K., Sato J. CFD-based design optimization for hydro turbines. ASME Journal Fluids Eng. 2007, vol. 129, pp. 159–168.

Wahidullah Hakim Safi, Vishnu Prasad. Design and permance analysis of Francis turbine for hydro power station on Kunar river using CFD. International Journal of Advanced Research. 2017, no. 5 (5), pp. 1004–1012.

Kaniecki M., Krzemianowskib Z. CFD analysis of high speed Francis hydraulic turbines. Transactions of the Institute of fluid flow machinery. 2016, no. 131, pp. 111–120.

Gros L., Kueny J. L., Avellan F., Bellet L. Numerical flow analysis of the GAMM turbine at nominal and off-design operating conditions. Proc. of the XIX IAHR Symposium, Hydraulic Machinery and Cavitation. 1998, pp. 121–128.

Santiago Lain, Manuel Garcia, Brian Quintero, Santiago Orrego. CFD Numerical simulations of Francis turbines Rev. Fac. Ing. Univ. Antioquia. 2010, no. 51, pp. 24–33.

Qian Z., Yang J., Huai W. Numerical simulation and analysis of pressure pulsation in Francis hydraulic turbine with air admission. Journal Hydrodynamics. 2007, vol. 19, pp. 467–472.

Menter F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 1994, no. 8, pp. 1598−1605.

Menter F. R., Esch T. Advanced Turbulence Modelling in CFX. CFX Update. 2001, no. 20, pp. 4–5.

Rusanov A. V., Kos'janov D. Ju. Chislennoe modelirovanie techeniy vyazkoy neszhimaemoy zhidkosti s ispol'zovaniem neyavnoy kvazimonotonnoy skhemy Godunova povyshennoy tochnosti [Mathematical modeling of fluid flow and analysis of the flow structure in the flow part of a low-pressure axial hydraulic turbine]. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy. 2009, vol. 5, no. 4 (41), pp. 4−7.

Rusanov A. V., Yershov S. V. Matematicheskoye modelirovaniye nestatsionarnykh gazodinamicheskikh protsessov v protochnykh chastyakh turbomashin [Mathematical modeling of non-stationary gas-dynamic processes in the flow parts of turbomachines]. Kharkov, IPMash NAN Ukrainy Publ., 2008. 275 p.