НАУКОВО-МЕТОДОЛОГІЧНИЙ ПІДХІД ДО СТВОРЕННЯ ЕНЕРГОЗБЕРІГАЮЧИХ ТЕХНОЛОГІЙ НА ОСНОВІ ВСТАНОВЛЕННЯ ТУРБІН МАЛОЇ ПОТУЖНОСТІ НА НИЗЬКОКИПЛЯЧИХ РОБОЧИХ ТІЛАХ

Основний зміст сторінки статті

Анотація

Проведено аналіз тенденції зміни використання паливно-енергетичних ресурсів для вироблення електроенергії. Показано, що все більша увага приділяється виробленню електричної енергії на основі утилізації вторинних енергетичних ресурсів (ВЕР). Для спрощення вирішення задачі енергозбереження на етапі створення нових енергетичних установок і при вдосконаленні існуючих об’єктів, що мають у своєму складі ВЕР достатнього потенціалу, побудована і запропонована ієрархічна структура комплексного методологічного підходу. Методологічний підхід дозволяє оцінити доцільність вирішення задачі енергозбереження на основі реалізації паротурбінних циклів на низькокиплячих робочих тілах. Структура підходу являє собою певну сукупність і послідовність дій, починаючи з аналізу джерела теплоти і закінчуючи розрахунком та підбором теплообмінного й турбінного устаткування. При цьому завдання пошуку оптимального рішення вирішується на кожному етапі формування теплової схеми. Відповідно до представленого методологічного підходу обирається робоче тіло, формується теплова схема, розраховуються теплообмінні апарати і турбіна. Запропоновано обирати теплообмінне обладнання з існуючого у нафтохімічній галузі, що дозволяє знизити витрати на розробку нової конструкції теплообмінника. Більш складним елементом теплової схеми є турбіна, яка у більшості випадків вимагає індивідуального підходу. Це призводить до необхідності проектування нової проточної частини для кожного окремого проекту. Показана важливість визначення оптимальних співвідношень витрат і ступеня розширення робочого тіла в проточній частині турбіни з урахуванням особливостей проектування і виготовлення лопаток апаратів. У якості прикладу представлені результати розрахункових досліджень когенераційної енергетичної установки, для якої отримані характеристики теплової схеми, запропоновані раціональні варіанти теплообмінного обладнання, а також підібрано оптимальний ступінь розширення в турбіні для отримання максимальної ефективності енергетичної установки і проточної частини турбіни, що може бути технічно реалізована.

Блок інформації про статтю

Розділ
Статті

Посилання

Haoshui Yu, Xiao Feng, Yufei Wang, Lorenz T. Biegler, John Eason. A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries. Applied Energy Journal. 2016, vol. 179, pp. 302–315. doi: 10.1016/j.apenergy.2016.06.093

Bini R., Prima M. Di., Guercio A. Organic Rankine cycle in biomass plants: an overview on different applications. Available at: http://www.turboden.eu/en/public/downloads/10A02943_paper_marco.pdf

(accessed 12.08.2019).

Saadatfar B., Fakhrai R., Fransson T. Waste heat recovery Organic Rankine cycles in sustainable energy conversion: A state-of-the-art review. The Journal of MacroTrends in Energy and Sustainability. 2013 vol. 1, issue 1, pp. 161–188.

Cirincione N. Design, construction and commissioning of an Organic Rankine Cycle waste heat recovery system with a Tesla-Hybrid turbine expander. Colorado, Fort Collins, Copyright by Nicholas Ray Cirincione, 2011. 79 p.

Alison Auld, Arganthal Berson, Simon Hogg. Organic Rankine cycles in waste heat recovery: a comparative study. International Journal of Low-Carbon Technologies. 2013, vol. 8, issue suppl_1, pp. i9–i18. doi: 10.1093/ijlct/ctt033

Kondrat'ev V. B. Tendentsii razvitiya mirovoy elektroenergetiki. Chast' 1 [Trends in the development of the world electric power industry. Part 1]. Available at: https://ss69100.livejournal.com/ 1877562.html (accessed 29.10.2014).

Dudley B. BP Statistical Review of World Energy. London, Pureprint Group Limited Publ., 2018. 56 р.

Dudley B. BP Energy Outlook 2017. Available at: bp.com/energyoutlook (accessed 10.09.2019).

Danilov N. I., Shchelokov Ya. M. Osnovy energosberezheniya [Energy Saving Basics]. Yekaterinburg, GOU VPO USTU-UPI Publ., 2006. 564 p.

Poles S., Venturin M. Numerical simulation of an organic Rankine cycle. Available at: http://www.openeering.com/sites/default/files/ Organic_Rankine_Cycle_0.pdf (accessed 20.09.2019).

Shubenko A. L., Cenetskiy A. V., Sarapin V. P. Vliyanie nachal'nykh parametrov na kharakteristiki protochnykh chastey turbin, rabotayushchikh na nizkokipyashchikh rabochikh telakh [The influence of the initial parameters on the characteristics of the flow parts of turbines operating on low-boiling fluids]. Visnyk Nats. tekhn. un-ta "KhPI". Seriya: Enerhetychni i teplotekhnichni protsesy i ustatkuvannya [Bulletin of the National Technical University "KhPI". Series: Energy and heat engineering processes and equipment]. Kharkiv, NTU "KhPI" Publ., 2016, no. 9 (1181), pp. 118–127. doi: 10.20998/2078-774X.2016.09.18

Peng D. Y., Robinson D. B. A new two – constant equation of state. Industrial & Engineering Chemistry Fundamentals. 1976, no. 15, pp. 59–64.

Shubenko О. L., Senetskyi O. V., Sarapin V. P., Babak M. Yu., Rogoviy S. V. Selection and calculation of heat exchange equipment for steam-turbine cycles on low-boiling working fluids. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2018, no. 17 (1293), pp. 9–16.

Tsanev S. V., Burov V. D., Remezov A. N. Gazoturbinnye i

parogazovye ustanovki teplovykh elektrostantsiy [Gas turbine and steam-gas installations of thermal power plants]. Moscow, МEI Publ., 2002. 584 p.

Malyarenko V. A., Shubenko O. L., Andryeyev S. Yu., Babak M. Yu., Senets'kyy O. V. Koheneratsiyni tekhnolohiyi v maliy enerhetytsi: monohrafiya [Cogeneration technologies in small energy: a monograph]. Kharkiv. nats. un-t mis'k. hop-va im. O. M. Beketova, In-t problem mashynobud. im. A. M. Pidhornoho [O. M. Beketov National University of Urban Economy in Kharkiv, A. Podgorny Institute of Problems of Mechanical Engineering NAS Ukraine]. Kharkiv, O. M. Becketov KhNUMG Publ., 2018. 454 p.

Shcheglyaev A. V. Parovye turbiny. Teoriya teplovogo protsessa i konstruktsii turbin [Steam turbines. Theory of thermal process and design of turbines]. Moscow, Energoatomizdat Publ., 1993. 800 p.

TU 3612-144-13972650-2015. Teploobmennye kozhukhotrubchatye apparaty serii TKA [Technical Conditions 3612-144-13972650-2015. Heat exchanger tubular tubes of TKA series]. Kazan, Etalon TKS CJSC Publ., 2015. 88 p.

Rusanov R., Klonowicz P., Rusanov A., Lampart P., Jędrzejewski L., Witanowski L. Methods for design of axial turbines for ORC cogeneration unit working with MDM. Visnyk Nats. tekhn. un-ta "KhPI". Seriya: Enerhetychni i teplotekhnichni protsesy i ustatkuvannya [Bulletin of the National Technical University "KhPI". Series: Energy and heat engineering processes and equipment]. Kharkiv, NTU "KhPI" Publ., 2015, no. 15 (1124), pp. 86–100.

Rusanov A., Rusanov R., Lampart P. Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Engineering. 2015, vol. 5, issue 1, pp. 399–410. doi: 10.1515/eng-2015-0047

Rusanov A., Lampart P., Rusanov R. Modelling of viscous turbulent flow in flow parts of turbines for ORC plants with taking into account the real properties of the working fluid MDM on the basis of the modified Benedict-Webb-Rubin equation of state. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2015, no. 7 (124), pp. 60–67.