ЧИСЕЛЬНИЙ АНАЛІЗ АЕРОПРУЖНИХ КОЛИВАНЬ ЛОПАТКОВОГО ВІНЦЯ ТУРБОМАШИНИ З УРАХУВАННЯМ ДЕФОРМАЦІЇ ДИСКУ

Основний зміст сторінки статті

Анотація

Нестаціонарні явища, викликані коливаннями лопаток під дією сил, що обурюють, характеризуються обміном енергією між потоком газу і коливними лопатками і складають основу фізичного механізму самозбудних коливань, які можуть або затухати (аеродемпфування), або проявлятися в стійкій формі автоколивань, або в нестійкій формі флатера, який може привести до руйнування конструкції. Тому аеропружна поведінка лопаток являє важливу проблему надійності і безпеки газо- і паротурбінних двигунів з високими аеродинамічними показниками і відповідно високо навантаженими лопатками. Одним з підходів до підвищення стійкості коливань лопаток є розлад власних форм, пов'язаний з деформацією диска. Представлено чисельний аналіз впливу деформації диска на аеропружні коливання лопаток робочого колеса турбомашини. Деформація диска характеризується кількістю вузлових діаметрів, що визначає міжлопатковий кут зсуву по фазі коливань сусідніх лопаток (МЛФК), який впливає на нестаціонарні аеродинамічні навантаження і амплітуди коливань лопаток. В роботі показано, що зменшення міжлопаткового кута зсуву по фазі коливань лопаток призводить до підвищення аеропружної стійкості, тобто до зниження амплітуд коливань лопаток. Запропонований чисельний метод розв'язання зв'язаної аеропружної задачі в тривимірному транзвуковому потоці ідеального газу дозволяє прогнозувати аеропружну поведінку лопаток, включаючи вимушені, самозбудні коливання і автоколивання з метою підвищення економічності і надійності лопаток апаратів турбомашин.

Блок інформації про статтю

Розділ
Статті

Посилання

Gnesin V. I., Kolodyazhnaya L. V. Aerouprugie yavleniya v turbomashinakh [The aeroelastic phenomena in the turbomachines]. Aerogidrodinamika i aeroakustika: problemy i perspektivy: sb. nauch. tr. [Aerohydrodynamics and aeroacoustics: problems and prospects: a collection of scientific papers]. Kharkov, Nats. aerokosmicheskiy un-t "KhAI" Publ., 2009, no. 3, pp. 53–62.

Cinnella P., Palma De, Pascazio G., Napolitano M. A Numerical Method for Turbomachinery Aeroelasticity. Journal of Turbomachinery. 2004, vol. 126, pp. 310–316.

Rządkowski R., Soliński M., Szczepanik R. The unsteady low-frequency aerodynamic forces acting on the rotor blade in the first stage of an jet engine axial compressor. Advances in vibration engineering. 2012, vol. 11, no. 2, pp. 193–204.

Soliński M., Rzadkowski R., Szczepanik R., Drewczyński M. The unsteady low-frequency forces acting on the rotor blade in the first stage on an axial compressor of SO-3 jet engine. Journal of Vibration Engineering and Technologies. 2014, vol. 2, no. 4, pp. 385–393.

Tanuma T., Okuda H., Hashimoto G., Yamamoto S., Skubukawa N., Okunao K., Saeki H., Tsukunda T. Aerodynamic and Structural Numerical Investigation of Unsteady Flow Effects on Last Stage Blades. Proc. of ASME Turbo Expo 2015. Vol. 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines (15–19 June 2015, Montreal, Quebec, Canada). P. GT2015–43848. doi: 10.1115/GT2015-43848

Petrie-Repar P., Fuhrer C., Grübel M., Vogt D. Two-Dimensional Steam Turbine Flutter Test Case. Proc. of the 14th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines (8–11 September 2015, Stockholm, Sweden). Stockholm, ISUAAAT14 Organizing Committee Publ., 2015, pp. 33–43.

Petrie-Repar P., Makhnov V., Shabrov N., Smirnov E. Analysis of a Long Shrouded Steam Turbine. Proc. of ASME Turbo Expo 2014. Vol. 7B: Structures and Dynamics (16–20 June 2014, Düsseldorf, Germany). P. GT2014–26874. doi: 10.1115/GT2014-26874

Zhou B., Mujezinovic A., Coleman A., Ning W., Ansari A. Forced Response Prediction for Steam Turbine Last Stage Blade Subject to Low Engine Order Excitation. Proc. of ASME Turbo Expo 2011. Vol. 7: Turbomachinery (6–10 June 2011, Vancouver, British Columbia, Canada). P. GT2011–46856. doi: 10.1115/GT2011-46856

Wang Wei-Ze, Xuan Fu-Zhen, Zhu Kui-Long, Tu Shan-Tung. Failure Analysis of the Final Stage Blade in Steam Turbine. Engineering Failure Analysis. 2007, vol. 14, pp. 632–641. doi: 10.1016/j.engfailanal.2006.03.004

Liu F., Cai J., Zhu Y., Wong A. S. F., Tsai H. M. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft. 2001, vol. 38 (2), pp. 334–342.

Huang X. Q., He L., Bell D. L. Influence of Upstream Stator on Rotor Flutter Stability in a Low Pressure Steam Turbine Stage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2006, vol. 220, issue 1, pp. 25–35.

Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Krayko A. N., Prokopov G. P. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solution of multidimensional problems of gas dynamics]. Moscow, Nauka Publ., 1976. 400 p.

Gnesin V. I., Kolodyazhnaya L. V., Zhandkovski R. Chislennyy analiz trekhmernogo nestatsionarnogo potoka ideal'nogo gaza v posledney stupeni turbomashiny s uchetom neosesimmetrichnogo vykhlopnogo patrubka [Numerical Analysis of the Three-Dimensional Nonstationary Flow of Ideal Gas in the Last Stage of Turbine Machine Taking into Consideration the Nonaxisymmetric Exhaust Pipe Branch]. Visnyk Nats. tekhn. un-ta "KhPI". Seriya: Enerhetychni i teplotekhnichni protsesy i ustatkuvannya [Bulletin of the National Technical University "KhPI". Series: Energy and heat engineering processes and equipment]. Kharkiv, NTU "KhPI" Publ., 2016, no. 8 (1180), pp. 47–53. doi: 10.20998/2078-774X.2016.08.06

Moyround F., Cosme N., Jöcker M., Fransson T. H., Lornagex D., Jacquet-Richardet G. A fluid-structure interfacing technique for compulational aeroelastic simulations. Proc. of the 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines (4–8 September 2000, Lyon, France). Lyon, ISUAAAT 9 Publ., 2000, p. 11.

Dowell E. H., Howard C., Curtiss Jr., Scanlan H. Robert, Sisto Ferrando. A modern course in aeroelasticity. Netherlands, Kluwer Academic Publ., 1989. 555 p.

Sanvito M., Pesatori E., Bachschmidt N., Chatterton S. Analysis of LP steam turbine blade vibration: experimental results and numerical simulations. 10th Int. Conf. on Vibrations in Rotating Machinery (11–13 September 2012, London). London, ImechE Publ., 2012, pp. 189–197.

McNamara J. J., Friedmann P. P., Powell K. G., Bartels R. E., Thruthimattam B. J. Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow. Journal AIAA. 2008. Vol. 46, no. 10, pp. 2591–2610.

Bolcs A., Fransson T. Aeroelasticity in turbomachines. Comparison of theoretical and experimental cascade results. Communication du Laboratoire de Thermique Appliquée et de Turbomachines. 1986, no. 13, 174 p.

Gnesin V. I., Kolodyazhnaya L. V. Numerical Modelling of Aeroelastic Behaviour for Oscillating Turbine Blade Row in 3D Transonic Ideal Flow. Journal Problems in Mash. Eng. 1999, vol. 1, no. 2, pp. 65–76.

Höhn W. Numerical investigation of blade flutter at or near stall in axial turbomachines. Doctoral Thesis, Royal Institute of Technology, S-10044. Stockholm, 2000. 180 p.