DOI: https://doi.org/10.20998/2411-3441.2019.2.13

CFD ПІДХІД ДЛЯ АНАЛІЗУ ХАРАКТЕРИСТИК ПОТОКУ ВИСОКОНАПІРНОЇ РАДІАЛЬНО-ОСЬОВОЇ ГІДРОТУРБІНИ

Konstantin Mironov, Yuliia Oleksenko, Vadym Myronov

Анотація


З ростом обчислювальної механіки віртуальні гідравлічні машини стають все більш реалістичними, дають можливість визначити незначні деталі потоку, що в свою чергу неможливо отримати при тестуванні моделей. В данній роботі проведено 3D турбулентний аналіз реального потоку в радіально-осьовій гідравлічній турбіні при трьох відкриттях направляючого апарату та різній швидкості обертання за допомогою програмного забезпечення для обчислювальної динаміки рідин (CFD) Ansys CFX. Обчислюються для отримання характеристик потоку середні значення параметрів потоку, такі як швидкість і кути потоку на вході і на виході з робочого колеса, направляючого апарату і статору. Для поліпшення енергетичних показників на попередньому етапі проектування гідротурбіни проводиться чисельне моделювання потоку. Даний підхід CFD знижує витрати і час в порівнянні з експериментальними підходом і дає можливість удосконалити і аналізувати показники турбіни і її конструкцію до моменту виготовлення моделі. Розрахунковий комплекс програм надає можливість побачити картину розподілу тиску, поле векторів швидкості і руху частинок рідини для обґрунтування та аналізу результатів. Наведені результати розрахункового дослідження підтверджують, що гідравлічний коефіцієнт корисної дії гідравлічної турбіни в значній мірі залежить від втрат в напрямному апараті і робочому колесі і означає, що саме цим елементам варто приділяти найбільші увагу, їх конструкції та узгодженню потоку в них. Отримані розрахункові дані відповідають відомим раніше експериментальним рекомендаціям для високонапірної радіально-осьової гідротурбіни.

Ключові слова


робоче колесо; спіральна камера; напрямний апарат; відсмоктуюча труба; статор; CFD; проточна частина; радіально-осьова гідротурбіна; характеристика потоку

Повний текст:

PDF

Посилання


Kolychev V. A., Tyn'janova I. I., Mironov K. A. Modelirovanie energeticheskikh kharakteristik gidroturbin na nachal'nom etape proektirovaniya [Modeling the energy characteristics of hydroturbines at the initial design stage]. Vostochno-evropeyskiy zhurnal peredovykh tekhnologiy. 2010, vol. 43, no. 1/6, pp. 27–38.

ANSYS CFX 11. Software Manual. 2005.

Chernyj S. G., Chirkov D. V., Lapin V .N. Chislennoe modelirovanie techeniy v turbomashinakh [Numerical simulation of currents in turbomachines]. Novosibirsk, Nauka Publ., 2006. 202 p.

Chung T. J. Computational fluid dynamics. Cambridge, Cambridge university press Publ., 2002. 1012 p.

Guoyi P., Shuliang C., Masaru I., Shinji H. Design optimisation of axial flow hydraulic turbine runner: Part II – Multiobjective Constrained Optimzation Method. International Journal for Numerical Methods in Fluids. 2002, vol. 39, issue 6, pp. 533–548.

Paul G. Tucker. Computation of Unsteady Internal Flows – Fundamental Methods with Case Studies. New York, Springer US Publ., 2001. 376 p.

Myronov K. A., Oleksenko Yu. Yu. Primenenie CFD pri proektirovanii elementov protochnoy chasti gidroturbin [The use of CFD in the design of elements of the flow part of hydraulic turbines]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2016, no. 20 (1192), pp. 116–121.

Barlit V. V., Mironov K. A., Vlasenko A. V., Jakovleva L. K. Raschet i proektirovanie protochnoy chasti reaktivnykh gidroturbin na osnove chislennogo modelirovaniya rabochego protsessa [Calculation and design of the flow parts of jet turbines based on numerical simulation of the workflow]. Kharkov, NTU "KhPI" Publ., 2008. 216 p.

Khare R., Prasad V., Kumar S. CFD approach for flow characteristics of hydraulic Francis turbine. International Journal of Engineering Science and Technology. 2010, vol. 2 (8), pp. 3824–3831.

Suhorebryj P. N, Barlit V. V., Drankovskij V. Je., Rao V. S., Harvani L. K. Kharakteristiki prostranstvennogo turbulentnogo potoka i poteri energii v elementakh protochnoy chasti gidroturbiny RO500 [Characteristics of spatial turbulent flow and energy loss in the elements of the flow part of the PO500 hydro turbine]. Problemy mashinostroeniya. 2004, vol. 7, no. 3, pp. 13–20.

ANSYS. Ansys 16.0 Release Documentation, Theory and Modelling Guide. ANSYS Inc.: Canonsburg, PA, USA, 2015.

Viscanti N., Pesatori E., Turozzi G. Improvement of a Francis runner design. 3rd IAHR International Meeting of the work group on Cavitations and Dynamic Problems in Hydraulic Machinery and systems (14–16 October 2009, Brno).

Jošt D., Škerlavaj A., Morgut M., Mežnar P., Nobile E. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube. Journal of Physics: Conference Series. 2015, vol. 579.

Kolychev V. A., Drankovskij V. Je. Raschet gidrodinamicheskikh kharakteristik napravlyayushchikh apparatov gidroturbiny [Calculation of the hydrodynamic characteristics of the guide vanes of a turbine]. Kharkov, NTU "KhPI" Publ., 2002. 268 p.

Prasad V., Gahlot V. K., Krishnamachar P. CFD approach for design optimization and validation for axial flow hydraulic turbine. Indian Journal of engineering and material sciences. 2009, vol. 16, pp. 229–236.

Zhang H., Zhang L. Numerical simulation of cavitating turbulent flow in a high head Francis turbine at part load operation with OpenFOAM. Procedia Engineering. 2012, vol. 31. pp. 156–165.

Jun A. A., Krylov B. A. Raschet i modelirovanie turbulentnykh techeniy s teploobmenom, smesheniem, khimicheskimi reaktsiyami i dvukhfaznykh techeniy v programmnom komplekse Fastest-3D [Calculation and modeling of turbulent flows with heat exchange, mixing, chemical reactions and two-phase flows in the Fastest-3D software package]. Moscow, MAI Publ., 2007. 116 p.

Ayli E., Kaplan A., Cetinturk H. CFD analysis of 3D flow for 1.4 MW Francis turbine and model turbine manufacturing. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 1A. (2–5 August 2015, Boston, Massachusetts, USA). Boston, ASME Copyright, 2015.

Kurosawa S., Lim S. M., Enomoto Y. Virtual model test for a Francis turbine. IOP Conference Series: Earth and Environmental Science. 2010, vol. 12, no. 1.

Ayli E., Celebioglu K., Aradag S. Determination and generalization of the effects of design parameters on Francis turbine runner performance. Engineering Applications of Computational Fluid Mechanics. 2016, vol. 10:1, pp. 545–564.


Пристатейна бібліографія ГОСТ






website: http://gm.khpi.edu.ua/