ВИЗНАЧЕННЯ ГІДРОДИНАМІЧНИХ ХАРАКТЕРИСТИК ОБОРОТНИХ ГІДРОМАШИН НА ОСНОВІ МЕТОДІВ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ

Основний зміст сторінки статті

Ірина Іванівна Тиньянова
Ксенія Сергіївна Резва
Віктор Едуардович Дранковський

Анотація

Питання дослідження та модернізації проточних частин оборотних гідравлічних машин зараз дуже актуальні. При розробці проточних частин оборотних гідромашин широко використовуються математичні моделі опису робочого процесу, які ґрунтуються на різних ступенях його деталізації. В даній роботі розглядається опис робочого процесу на макро- та мікрорівнях, що дає можливість вирішувати комплекс задач в залежності від поставлених цілей. Одним із методів є метод з використанням безрозмірних усереднених параметрів. В роботі отримані рівняння моделі (макрорівень) робочого процесу, які можуть бути використані як для аналізу кінематичних і енергетичних характеристик оборотної гідромашини при фіксованій геометрії проточної частини, так і для чисельного моделювання впливу геометричних параметрів на ці характеристики. Стаття містить залежності витрати, ККД, потужності від геометричних і режимних параметрів, що дозволяють вже на початковій стадії проектування оцінити енергетичні якості оборотної гідромашини. Наведено формулу для визначення кута потоку за напрямним апаратом. Наведено розрахунки енергетичних характеристик для проточних частин оборотних гідромашин ОРО200, ОРО500. Побудовані поверхні гідравлічного ККД для ОРО200 і ОРО500, визначені теоретичні і енергетичні параметри. Для більш досконалого дослідження оборотної гідромашини було проведене чисельне дослідження на мікрорівні за допомогою програми CFD, що дозволило отримати розподіл тисків та швидкостей в проточній частині в турбінному режимі при оптимальних значеннях витрати та обертів. Розглядаються питання дослідження балансу енергії. Аналіз результатів досліджень показав, що гідравлічні втрати займають значну долю від загальних, тому в ході роботи були визначені гідравлічні втрати в елементах проточної частини насос-турбіни на основі методу усереднених безрозмірних параметрів та методу просторової течії. Порівняльний аналіз отриманих результатів за різними моделями з результатами фізичного експерименту показав задовільну збіжність, що свідчить про доцільність застосування обраних методів для дослідження оборотних гідромашин.

Блок інформації про статтю

Розділ
Статті

Посилання

Ryabenko O. A., Klyukha O. O., Tymoshchuk V. S. Rol' HAES v roboti enerhosystem [The role of PSP in the operation of power systems]. Vymiryuval'na ta obchyslyuval'na tekhnika v tekhnolohichnykh protsesakh. Kyiv. 2014, no. 2, pp. 167–170.

Landau Yu. A. Osnovnye tendentsii razvitiya gidroenergetiki Ukrainy [The main trends in the development of hydropower in Ukraine]. Nauchnye raboty. Kharkov. 2014, vol. 53, issue 40, pp. 82–86.

Kucheryava I. M., Sorokina N. L. Shlyakhy rehulyuvannya hrafikiv navantazhennya ta upravlinnya spozhyvannyam elektrychnoyi enerhiyi [Ways of adjusting load schedules and controlling the consumption of electric energy]. Hidroenerhetyka Ukrayiny. 2007, no. 4, pp. 36–44.

Sokol Ye., Cherkashenko M., Drankovskiy V. Control and energy models of reversible hydraulic machines. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2019, no. 2, pp. 4–11. doi: 10.20998/2411-3441.2019.2.01

Sukhodolya O. M., Sydorenko A. A., Byehun S. V., Bilukha A. A. Suchasnyy stan, problemy ta perspektyvy rozvytku hidroenerhetyky Ukrayiny [Current state, problems and prospects of hydropower development of Ukraine]. Kyiv, NISD, 2014. 112 p.

Kolychev V. A., Drankovskiy V. E., Marakhovskiy M. B. Raschet gidrodinamicheskikh kharakteristik napravlyayushchikh apparatov gidroturbiny [Calculation of the hydrodynamic characteristics of the wicket gate of the hydraulic turbine]. Kharkov, NTU "KhPI" Publ., 2002. 216 p.

Kolychev V. A., Mironov K. A., Tyn'yanova I. I. Raschet i analiz balansa poter' energii v vysokonapornoy radial'no-osevoy gidravlicheskoy turbine [Calculation and analysis of the energy loss balance in a high-head Francis hydroturbine.]. Skhidno Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2005, no. 1/2 (13), pp. 95–106.

Kolychev V. A., Mironov K. A., Tyn'yanova I. I. Obshchie zakonomernosti rabochego protsessa i ikh primenenie dlya rascheta i analiza energeticheskikh kharakteristik gidroturbin [General regularities of the working process and their application for the calculation and analysis of the energy characteristics of hydroturbines]. Skhidno-Yevropeys'kyy zhurnal peredovykh tekhnolohiy. 2006, no. 4/3 (22), pp. 54–64.

Kolychev V. A., Drankovskiy V. E., Mironov K. A., Tyn'yanova I. I. Modelirovanie kinematicheskikh kharakteristik potoka v radial'no osevoy gidroturbine pri proektirovanii ee protochnoy chasti [Modeling of the kinematic characteristics of the flow in a Francis hydraulic turbine during designing its water passage]. Visnyk Sums'koho derzhavnoho universytetu. Seriya: Теkhnichni nauky [Sumy State University Bulletin: Technical Sciences Series]. Sumy, SumDU Publ., 2003, no. 13 (59), pp. 124–131.

Marakhovskiy M. B., Gasyuk A. I. Matematicheskaya model' gidrodinamicheskikh kharakteristik elementov protochnoy chasti radial'no-osevoy gidroturbiny. Chast' 2 [Mathematical model of hydrodynamic characteristics of the elements of the flow part of the radial-axial hydraulic turbine. Part 2]. Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units. Kharkiv, NTU "KhPI" Publ., 2018, no. 46 (1322), pp. 49–53.

Rusanov A., Rusanov R., Lampart P., Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Engineering. 2015, vol. 5, pp. 399–410.

Starodubtsev Y. V., Gogolev I. G., Solodov V. G. Numerical 3D model of viscous turbulent flow in one stage gas turbine and its experimental validation. Journal of Thermal Science. 2005, vol. 14, pp. 136–141.

Yang Wei, Xiao Ruofu. Multiobjective Optimization Design of a Pump–Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy. Journal of Fluids Engineering. 2014, vol. 136, pp. 014501-1–014501-9.

Sukhorebryy P. N., Koval' S. A., Nenya V. G., Kochevskiy A. N. Opredelenie struktury potoka v spiral'noy kamere radial'no-osevoy obratimoy gidromashiny na osnove chislennogo modelirovaniya techeniya zhidkosti [Determination of the flow structure in a spiral chamber of a radially axial reversible hydraulic machine based on numerical simulation of fluid flow]. Problemy mashinostroeniya. 2010, vol. 13, no. 1, pp. 31–41.

Pilev I., Rigin V., Sonin V., Semenova A., Skorospelov V., Chirkov D., Astrakova A. Experience in optimization design of turbine water passages shapes. Proc. of Hydro 2014 (13–15 October 2014, Cernobbio). Cernobbio, 2014. 8 p.

Rezvaya K., Cherkashenko M., Drankovskiy V., Tynyanova I., Makarov V. Using mathematical modeling for determination the optimal geometric parameters of a pump-turbine water passage. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS). (2020, Istanbul). Istanbul, 2020, pp. 212–216. doi: 10.1109/IEPS51250.2020.9263139

Khorev O. Numerical study of fluid flow in a spiral chamber of aradial-axial hydraulic machine. East European Journal of Advanced Technology. 2013, no. 1/8, pp. 41–45.

Rezvaya K., Krupa Е., Drankovskiy V., Potetenko O., Tynyanova I. The numerical reseach of the flow in the inlet of the high-head hydraulic turbine. Bulletin of the National Technical University "KhPI". Series: New solution in modern technologies. Kharkiv, NTU "KhPI" Publ., 2017, no. 7 (1229), pp. 97–102. doi: 10.20998/2413-4295.2017.07.13

Rezvaya K., Krupa E., Drankovskiy V., Makarov V. Optimization of the water passage of a pump-turbine based on a numerical study of its hydrodynamic characteristics. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Lviv, 2019, pp. 460–463.

Bychkov I. M. Verification of the OpenFOAM application package on aerodynamic profile flow problems. XIX school-seminar "Aerodynamics of Aircraft". 2008.

Stefan D., Rudolf P. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model. Journal of Physics: Conference Series. 2015, vol. 579